A global div-curl-lemma for mixed boundary conditions in weak lipschitz domains

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Contributors

  • Dirk Pauly - , University of Duisburg-Essen (Author)

Abstract

We prove a global version of the so-called -curl -lemma, a crucial result for compensated compactness and in homogenization theory, for mixed tangential and normal boundary conditions in bounded weak Lipschitz domains in 3D and weak Lipschitz interfaces. The crucial tools and the core of our arguments are the de Rham complex and Weck’s selection theorem, the essential compact embedding result for Maxwell’s equations.

Details

Original languageEnglish
Title of host publicationMathematics of Wave Phenomena
EditorsWilly Dörfler, Marlis Hochbruck, Dirk Hundertmark, Wolfgang Reichel, Andreas Rieder, Roland Schnaubelt, Birgit Schörkhuber
PublisherSpringer Science and Business Media B.V.
Pages243-250
Number of pages8
ISBN (print)978-3-030-47173-6
Publication statusPublished - 2020
Peer-reviewedYes
Externally publishedYes

Publication series

SeriesTrends in Mathematics
ISSN2297-0215

External IDs

ORCID /0000-0003-4155-7297/work/145224237

Keywords

ASJC Scopus subject areas