A data-driven approach for quantifying the resilience of railway networks
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Disruptions occur frequently in railway networks, requiring timetable adjustments, while causing serious delays and cancellations. However, little is known about the performance dynamics during disruptions nor the extent to which the resilience curve applies in practice. This paper presents a data-driven quantification approach for an ex-post assessment of the resilience of railway networks. Using historical traffic realization data in the Netherlands, resilience curves are reconstructed using a new composite indicator, and quantified for a large set of single disruptions. The values of the resilience metrics are compared across disruptions of different causes using Welch's ANOVA and the Games-Howell test. Additionally, representative resilience curves for each disruption cause are determined. Results show a significant heterogeneity in the shape of the resilience curves, even within disruptions of the same cause. The proposed approach represents a useful decision support tool for practitioners to assess disruptions dynamics and propose best measures to improve resilience.
Details
Original language | English |
---|---|
Article number | 103913 |
Number of pages | 18 |
Journal | Transportation Research Part A: Policy and Practice |
Volume | 179(2024) |
Publication status | Published - Jan 2024 |
Peer-reviewed | Yes |
External IDs
ORCID | /0000-0003-4111-2255/work/149798007 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- ANOVA, Bathtub model, Data-driven, Disruption management, Railways, Resilience