A 3D cell culture system for bioengineering human neuromuscular junctions to model ALS

Research output: Contribution to journalResearch articleContributedpeer-review


  • Bita Massih - , University Hospital of Würzburg (Author)
  • Alexander Veh - , University Hospital of Würzburg (Author)
  • Maren Schenke - , University of Veterinary Medicine Hannover (Author)
  • Simon Mungwa - , University Hospital of Würzburg (Author)
  • Bettina Seeger - , University of Veterinary Medicine Hannover (Author)
  • Bhuvaneish T Selvaraj - , University of Edinburgh (Author)
  • Siddharthan Chandran - , University of Edinburgh (Author)
  • Peter Reinhardt - , Center for Regenerative Therapies Dresden (Author)
  • Jared Sterneckert - , Center for Regenerative Therapies Dresden, Chair of iPS Cells and Neurodegenerative Diseases (Author)
  • Andreas Hermann - , University Medical Center Rostock (Author)
  • Michael Sendtner - , University Hospital of Würzburg (Author)
  • Patrick Lüningschrör - , University Hospital of Würzburg (Author)


The signals that coordinate and control movement in vertebrates are transmitted from motoneurons (MNs) to their target muscle cells at neuromuscular junctions (NMJs). Human NMJs display unique structural and physiological features, which make them vulnerable to pathological processes. NMJs are an early target in the pathology of motoneuron diseases (MND). Synaptic dysfunction and synapse elimination precede MN loss suggesting that the NMJ is the starting point of the pathophysiological cascade leading to MN death. Therefore, the study of human MNs in health and disease requires cell culture systems that enable the connection to their target muscle cells for NMJ formation. Here, we present a human neuromuscular co-culture system consisting of induced pluripotent stem cell (iPSC)-derived MNs and 3D skeletal muscle tissue derived from myoblasts. We used self-microfabricated silicone dishes combined with Velcro hooks to support the formation of 3D muscle tissue in a defined extracellular matrix, which enhances NMJ function and maturity. Using a combination of immunohistochemistry, calcium imaging, and pharmacological stimulations, we characterized and confirmed the function of the 3D muscle tissue and the 3D neuromuscular co-cultures. Finally, we applied this system as an in vitro model to study the pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and found a decrease in neuromuscular coupling and muscle contraction in co-cultures with MNs harboring ALS-linked SOD1 mutation. In summary, the human 3D neuromuscular cell culture system presented here recapitulates aspects of human physiology in a controlled in vitro setting and is suitable for modeling of MND.


Original languageEnglish
Article number996952
JournalFrontiers in cell and developmental biology
Publication statusPublished - 14 Feb 2023

External IDs

PubMedCentral PMC9973451
Scopus 85149902828
ORCID /0000-0002-7688-3124/work/142660131


Research priority areas of TU Dresden

DFG Classification of Subject Areas according to Review Boards