3D-Printed Hydrogels as Photothermal Actuators
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Thermoresponsive hydrogels were 3D-printed with embedded gold nanorods (GNRs), which enable shape change through photothermal heating. GNRs were functionalized with bovine serum albumin and mixed with a photosensitizer and poly(N-isopropylacrylamide) (PNIPAAm) macromer, forming an ink for 3D printing by direct ink writing. A macromer-based approach was chosen to provide good microstructural homogeneity and optical transparency of the unloaded hydrogel in its swollen state. The ink was printed into an acetylated gelatin hydrogel support matrix to prevent the spreading of the low-viscosity ink and provide mechanical stability during printing and concurrent photocrosslinking. Acetylated gelatin hydrogel was introduced because it allows for melting and removal of the support structure below the transition temperature of the crosslinked PNIPAAm structure. Convective and photothermal heating were compared, which both triggered the phase transition of PNIPAAm and induced reversible shrinkage of the hydrogel–GNR composite for a range of GNR loadings. During reswelling after photothermal heating, some structures formed an internally buckled state, where minor mechanical agitation recovered the unbuckled structure. The BSA-GNRs did not leach out of the structure during multiple cycles of shrinkage and reswelling. This work demonstrates the promise of 3D-printed, photoresponsive structures as hydrogel actuators.
Details
Original language | English |
---|---|
Article number | 2032 |
Journal | Polymers |
Volume | 16 |
Issue number | 14 |
Publication status | Published - Jul 2024 |
Peer-reviewed | Yes |
Keywords
ASJC Scopus subject areas
Keywords
- 3D printing, bioplotting, cycloaddition, gelatin, gold nanorods, photothermal heating, poly(N-isopropylacrylamide)