Skip to content Skip to footer

Related content

Exploring design space: Machine learning for multi-objective materials design optimization with enhanced evaluation strategies

Conrad, F., Stöcker, J. P., Signorini, C., De paula salgado, I., Wiemer, H., Kaliske, M. & Ihlenfeldt, S., 1 Jan 2025, In: Computational materials science. 246, 113432.

Research output: Contribution to journalResearch articleContributedpeer-review

DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure reconstruction from extremely small data sets

Zhang, Y., Seibert, P., Otto, A., Raßloff, A., Ambati, M. & Kästner, M., 25 Jan 2024, In: Computational materials science. 232, 14 p., 112661.

Research output: Contribution to journalResearch articleContributedpeer-review

Electronic and optical properties of C60/Ti2CT2 and C60/Ti3C2T2 (T = F, OH, or O) Heterostructures

Hajiahmadi, Z., Khazaei, M., Ranjbar, A., Mostafaei, A., Chertopalov, S., Kühne, T. D. & Cuniberti, G. & 3 others, Hosano, H., Raebiger, H. & Ohno, K., Sept 2023, In: Computational materials science. 228, 112364.

Research output: Contribution to journalResearch articleContributedpeer-review

aflow.org: A web ecosystem of databases, software and tools

Esters, M., Oses, C., Divilov, S., Eckert, H., Friedrich, R., Hicks, D. & Mehl, M. J. & 6 others, Rose, F., Smolyanyuk, A., Calzolari, A., Campilongo, X., Toher, C. & Curtarolo, S., 5 Jan 2023, In: Computational materials science. 216, 111808.

Research output: Contribution to journalResearch articleContributedpeer-review