Z4 parafermions in one-dimensional fermionic lattices

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alessio Calzona - , University of Luxembourg, University of Genoa (Autor:in)
  • Tobias Meng - , Professur für Theoretische Festkörperphysik (Autor:in)
  • Maura Sassetti - , University of Genoa (Autor:in)
  • Thomas L. Schmidt - , University of Luxembourg (Autor:in)

Abstract

Parafermions are emergent excitations which generalize Majorana fermions and are potentially relevant to topological quantum computation. Using the concept of Fock parafermions, we present a mapping between lattice Z4 parafermions and lattice spin-1/2 fermions which preserves the locality of operators with Z4 symmetry. Based on this mapping, we construct an exactly solvable, local, and interacting one-dimensional fermionic Hamiltonian which hosts zero-energy modes obeying parafermionic algebra. We numerically show that this parafermionic phase remains stable in a wide range of parameters, and discuss its signatures in the fermionic spectral function.

Details

OriginalspracheEnglisch
Aufsatznummer201110
FachzeitschriftPhysical Review B
Jahrgang98
Ausgabenummer20
PublikationsstatusVeröffentlicht - 14 Nov. 2018
Peer-Review-StatusJa