X-Vent: ICU Ventilation with Explainable Model-Based Reinforcement Learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

This study introduces a Model-Based Deep Reinforcement Learning approach to enhance the effectiveness and transparency of mechanical ventilation treatment in the critical care setting of Intensive Care Units (ICUs). Distinct from conventional model-free methods, our approach benefits from the model-based algorithms’ capability to learn and interrogate dynamics models, enabling better generalization through synthetic data generation and a deeper understanding of the system dynamics. Coupled with Explainable AI (XAI) techniques, we focus on uncovering the underlying mechanisms of patient-ventilator interactions as learned by the AI. Our findings show a significant improvement in treatment efficacy, measured by Fitted Q Evaluation (FQE) metrics, achieved without the need for auxiliary rewards. This advancement not only highlights the potential of model-based reinforcement learning in healthcare but also emphasizes the importance of transparent AI design in healthcare applications.

Details

OriginalspracheEnglisch
TitelECAI 2024
Redakteure/-innenUlle Endriss, Francisco S. Melo, Kerstin Bach, Alberto Bugarin-Diz, Jose M. Alonso-Moral, Senen Barro, Fredrik Heintz
Seiten4719-4726
Seitenumfang8
ISBN (elektronisch)978-1-64368-548-9
PublikationsstatusVeröffentlicht - 16 Okt. 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheFrontiers in Artificial Intelligence and Applications
NummerECAI 2024
Band392
ISSN0922-6389

Externe IDs

unpaywall 10.3233/faia241069
Scopus 85216627050

Schlagworte

ASJC Scopus Sachgebiete