Using Reinforcement Learning for Optimizing Energy Consumed by Base Stations

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

As mobile communication networks expand rapidly, optimizing their performance becomes crucial. This paper investigates the use of reinforcement learning (RL) to dynamically manage base stations (BS) and sector coverage in response to real-time network demands. Our RL models learn to power down and reactivate BS based on user demand and adjust sector coverage to maintain service quality. Validated using real-world data, our approach demonstrates improvements in adaptability and performance. The results highlight the effectiveness of RL in balancing operational efficiency with service quality and its resilience to evolving network conditions.

Details

OriginalspracheEnglisch
TitelCIEES 2024 - IEEE International Conference on Communications, Information, Electronic and Energy Systems
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seitenumfang6
ISBN (elektronisch)979-8-3503-5286-3
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Konferenz

Titel5th IEEE International Conference on Communications, Information, Electronic and Energy Systems
KurztitelCIEES 2024
Veranstaltungsnummer5
Dauer20 - 22 November 2024
OrtMeridian Bolyarski Hotel & Online
StadtVeliko Tarnovo
LandBulgarien

Externe IDs

ORCID /0000-0001-8469-9573/work/184003922

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • 5G, artificial intelligence, energy efficiency, mobile base stations, reinforcement learning