Using Reinforcement Learning for Optimizing Energy Consumed by Base Stations
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
As mobile communication networks expand rapidly, optimizing their performance becomes crucial. This paper investigates the use of reinforcement learning (RL) to dynamically manage base stations (BS) and sector coverage in response to real-time network demands. Our RL models learn to power down and reactivate BS based on user demand and adjust sector coverage to maintain service quality. Validated using real-world data, our approach demonstrates improvements in adaptability and performance. The results highlight the effectiveness of RL in balancing operational efficiency with service quality and its resilience to evolving network conditions.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | CIEES 2024 - IEEE International Conference on Communications, Information, Electronic and Energy Systems |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seitenumfang | 6 |
| ISBN (elektronisch) | 979-8-3503-5286-3 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 5th IEEE International Conference on Communications, Information, Electronic and Energy Systems |
|---|---|
| Kurztitel | CIEES 2024 |
| Veranstaltungsnummer | 5 |
| Dauer | 20 - 22 November 2024 |
| Ort | Meridian Bolyarski Hotel & Online |
| Stadt | Veliko Tarnovo |
| Land | Bulgarien |
Externe IDs
| ORCID | /0000-0001-8469-9573/work/184003922 |
|---|
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- 5G, artificial intelligence, energy efficiency, mobile base stations, reinforcement learning