Universal Distributional Decision-Based Black-Box Adversarial Attack with Reinforcement Learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Yiran Huang - , Karlsruher Institut für Technologie (Autor:in)
  • Yexu Zhou - , Karlsruher Institut für Technologie (Autor:in)
  • Michael Hefenbrock - , Karlsruher Institut für Technologie (Autor:in)
  • Till Riedel - , Karlsruher Institut für Technologie (Autor:in)
  • Likun Fang - , Karlsruher Institut für Technologie (Autor:in)
  • Michael Beigl - , Karlsruher Institut für Technologie (Autor:in)

Abstract

The vulnerability of the high-performance machine learning models implies a security risk in applications with real-world consequences. Research on adversarial attacks is beneficial in guiding the development of machine learning models on the one hand and finding targeted defenses on the other. However, most of the adversarial attacks today leverage the gradient or logit information from the models to generate adversarial perturbation. Works in the more realistic domain: decision-based attacks, which generate adversarial perturbation solely based on observing the output label of the targeted model, are still relatively rare and mostly use gradient-estimation strategies. In this work, we propose a pixel-wise decision-based attack algorithm that finds a distribution of adversarial perturbation through a reinforcement learning algorithm. We call this method Decision-based Black-box Attack with Reinforcement learning (DBAR). Experiments show that the proposed approach outperforms state-of-the-art decision-based attacks with a higher attack success rate and greater transferability.

Details

OriginalspracheEnglisch
TitelNeural Information Processing
Redakteure/-innenMohammad Tanveer, Sonali Agarwal, Seiichi Ozawa, Asif Ekbal, Adam Jatowt
Herausgeber (Verlag)Springer, Cham
Seiten206–215
Seitenumfang10
ISBN (elektronisch)978-3-031-30111-7
ISBN (Print)978-3-031-30110-0
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheLecture Notes in Computer Science, Volume 13625
ISSN0302-9743

Externe IDs

Scopus 85161696199

Schlagworte

Schlagwörter

  • Adversarial attack, Reinforcement Learning, Decision attack

Bibliotheksschlagworte