Ultra-low LPS/LLZO interfacial resistance – towards stable hybrid solid-state batteries with Li-metal anodes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Juliane Hüttl - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Christoph Seidl - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Henry Auer - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Kristian Nikolowski - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Arno L. Görne - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Michael Arnold - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Christian Heubner - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Mareike Wolter - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Alexander Michaelis - , Professur für Anorganisch-Nichtmetallische Werkstoffe (gB/FG), Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)

Abstract

To enable solid-state batteries with Li metal anodes, different classes of electrolytes are being investigated, mainly polymers, oxides, and sulfides. To overcome individual drawbacks of the material classes, so called bilayer hybrid cells combining layers of different electrolyte materials are considered highly promising. However, the introduction of an additional interface between the two solid electrolytes raises the question of the corresponding interfacial resistance. Herein, the properties of the interface between the two promising electrolytes Al-LLZO (Li6.16Al0.28La3Zr2O12) and LPS (Li7P3S11) are investigated by comprehensive impedance analyses. A series of systematic measurements allows to deconvolute the pressure dependence of the resistances related to the LPS material and the LPS/LLZO interface. This analysis reveals a significant pressure dependence of the LPS/LLZO interfacial resistance, mainly attributed to constriction resistance. Optimization of the LPS/LLZO interface is carried out by targeted surface treatment, resulting in a dramatic decrease of the interfacial resistance to virtually zero. These mechanistic studies and optimization approaches are complemented by practically relevant cycling tests using Li-metal electrodes. The cells show excellent cycling stability and negligible degradation. These findings contribute to the fundamental understanding of solid-solid interfaces in bilayer hybrid cells, indicating that solid-state batteries with hybrid LPS/LLZO electrolytes appear highly promising.

Details

OriginalspracheEnglisch
Seiten (von - bis)259-267
Seitenumfang9
FachzeitschriftEnergy storage materials
Jahrgang40
PublikationsstatusVeröffentlicht - Sept. 2021
Peer-Review-StatusJa

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Hybrid electrolyte, Interface resistance, LLZO, LPS, Solid state battery