Tuning the negative thermal expansion behavior of the metal− Organic framework Cu3BTC2 by retrofitting

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christian Schneider - , Technische Universität München (Autor:in)
  • David Bodesheim - , Technische Universität München (Autor:in)
  • Michael G. Ehrenreich - , Technische Universität München (Autor:in)
  • Valentina Crocella - , University of Turin (Autor:in)
  • Janos Mink - , Hungarian Academy of Sciences, University of Pannonia (Autor:in)
  • Roland A. Fischer - , Technische Universität München (Autor:in)
  • Keith T. Butler - , Rutherford Appleton Laboratory (Autor:in)
  • Gregor Kieslich - , Technische Universität München (Autor:in)

Abstract

The modular building principle of metal− organic frameworks (MOFs) presents an excellent platform to explore and establish structure−property relations that tie microscopic to macroscopic properties. Negative thermal expansion (NTE) is a common phenomenon in MOFs and is often ascribed to collective motions that can move through the structure at sufficiently low energies. Here, we show that the introduction of additional linkages in a parent framework, retrofitting, is an effective approach to access lattice dynamics experimentally, in turn providing researchers with a tool to alter the NTE behavior in MOFs. By introducing TCNQ (7,7,8,8-tetracyanoquinodimethane) into the prototypical MOF Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate; HKUST-1), NTE can be tuned between αV = −15.3 × 10−6 K−1 (Cu3BTC2) and αV = −8.4 × 10−6 K−1 (1.0TCNQ@ Cu3BTC2). We ascribe this phenomenon to a general stiffening of the framework as a function of TCNQ loading due to additional network connectivity, which is confirmed by computational modeling and far-infrared spectroscopy. Our findings imply that retrofitting is generally applicable to MOFs with open metal sites, opening yet another way to fine-tune properties in this versatile class of materials.

Details

OriginalspracheEnglisch
Seiten (von - bis)10504-10509
Seitenumfang6
FachzeitschriftJournal of the American Chemical Society
Jahrgang141
Ausgabenummer26
PublikationsstatusVeröffentlicht - 3 Juli 2019
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 31184478
ORCID /0000-0001-5873-8751/work/142246451