Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
  • Universitätsmedizin Mainz
  • Maastricht University
  • Deutsches Krebsforschungszentrum (DKFZ)
  • Johannes Kepler Universität Linz
  • University of Oxford
  • University of Antwerp
  • City of Hope Comprehensive Cancer Center - Duarte
  • Technion-Israel Institute of Technology
  • University of New South Wales
  • Khalkhal School of Medical Sciences
  • University of Sydney
  • University Hospitals Birmingham NHS Foundation Trust
  • Leeds Teaching Hospitals NHS Trust
  • University of Birmingham
  • Universität Zürich
  • University of Glasgow
  • Staatliche Berufsfachschulen am Universitätsklinikum Erlangen
  • Jinggangshan University
  • Guangzhou Medical University
  • Queen's University Belfast
  • Universitätsklinikum Aachen
  • Technische Universität München
  • Klinik und Poliklinik für Kinder- und Jugendmedizin

Abstract

Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.

Details

OriginalspracheEnglisch
Aufsatznummere4
Seiten (von - bis)1650-1661
Seitenumfang13
FachzeitschriftCancer cell
Jahrgang41
Ausgabenummer9
PublikationsstatusVeröffentlicht - 11 Sept. 2023
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC10507381
Scopus 85169513346

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Humans, Algorithms, Biomarkers, Biopsy, Microsatellite Instability, Colorectal Neoplasms/genetics

Bibliotheksschlagworte