Transfer Learning for Domain-Specific Named Entity Recognition in German

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Automated text analysis as named entity recognition (NER) heavily relies on large amounts of high-quality training data. Transfer learning approaches aim to overcome the problem of lacking domain-specific training data. In this paper, we investigate different transfer learning approaches to recognize unknown domain-specific entities, including the influence on varying training data size. The experiments are based on the revised German SmartData Corpus, and a baseline model, trained on this corpus.

Details

OriginalspracheEnglisch
Titel2020 6th IEEE Congress on Information Science and Technology (CiSt)
Herausgeber (Verlag)Wiley-IEEE Press
Seiten321-327
Seitenumfang7
ISBN (elektronisch)9781728166469
ISBN (Print)978-1-7281-6647-6
PublikationsstatusVeröffentlicht - 12 Juni 2021
Peer-Review-StatusJa

Konferenz

Titel2020 6th IEEE Congress on Information Science and Technology (CiSt)
Dauer5 - 12 Juni 2021
OrtAgadir - Essaouira, Morocco

Externe IDs

Scopus 85103860847
Ieee 10.1109/CiSt49399.2021.9357262
ORCID /0000-0001-9756-6390/work/154741803

Schlagworte

Schlagwörter

  • Annotations, Data models, Text recognition, Training, Training data, Transfer learning, Vocabulary, NER, Named Entity Recognition System, transfer learning