Transfer Learning for Domain-Specific Named Entity Recognition in German
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Automated text analysis as named entity recognition (NER) heavily relies on large amounts of high-quality training data. Transfer learning approaches aim to overcome the problem of lacking domain-specific training data. In this paper, we investigate different transfer learning approaches to recognize unknown domain-specific entities, including the influence on varying training data size. The experiments are based on the revised German SmartData Corpus, and a baseline model, trained on this corpus.
Details
Originalsprache | Englisch |
---|---|
Titel | 2020 6th IEEE Congress on Information Science and Technology (CiSt) |
Herausgeber (Verlag) | Wiley-IEEE Press |
Seiten | 321-327 |
Seitenumfang | 7 |
ISBN (elektronisch) | 9781728166469 |
ISBN (Print) | 978-1-7281-6647-6 |
Publikationsstatus | Veröffentlicht - 12 Juni 2021 |
Peer-Review-Status | Ja |
Konferenz
Titel | 2020 6th IEEE Congress on Information Science and Technology (CiSt) |
---|---|
Dauer | 5 - 12 Juni 2021 |
Ort | Agadir - Essaouira, Morocco |
Externe IDs
Scopus | 85103860847 |
---|---|
Ieee | 10.1109/CiSt49399.2021.9357262 |
ORCID | /0000-0001-9756-6390/work/154741803 |
Schlagworte
Schlagwörter
- Annotations, Data models, Text recognition, Training, Training data, Transfer learning, Vocabulary, NER, Named Entity Recognition System, transfer learning