Toposelective Functionalization of Solution-Processed Transition Metal Dichalcogenides with Metal Nanoparticles via Defect Engineering

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Stefano Ippolito - , Université de Strasbourg (Autor:in)
  • Verónica Montes-García - , Université de Strasbourg (Autor:in)
  • Adam G. Kelly - , Universidade NOVA de Lisboa (Autor:in)
  • Valentina Girelli Consolaro - , Université de Strasbourg (Autor:in)
  • Walid Baaziz - , Université de Strasbourg (Autor:in)
  • María José Cordero-Ferradás - , University of Vigo (Autor:in)
  • Arezoo Dianat - , Professur für Materialwissenschaft und Nanotechnik, Max Bergmann Zentrum für Biomaterialien Dresden (MBZ) (Autor:in)
  • Jorge Pérez-Juste - , University of Vigo (Autor:in)
  • Isabel Pastoriza-Santos - , University of Vigo (Autor:in)
  • Ovidiu Ersen - , Université de Strasbourg (Autor:in)
  • Gianaurelio Cuniberti - , Professur für Materialwissenschaft und Nanotechnik, Max Bergmann Zentrum für Biomaterialien Dresden (MBZ) (Autor:in)
  • Jonathan N. Coleman - , Trinity College Dublin (Autor:in)
  • Paolo Samorì - , Université de Strasbourg (Autor:in)

Abstract

Solution-processed semiconducting transition metal dichalcogenides commonly serve as quintessential 2D substrates and templates to develop hybrid structures with novel and/or enhanced properties and performance. However, the effects and control of their ubiquitous and abundant structural defects are still poorly explored and understood. Here, exploiting their highly reactive and defective edges, an unprecedented strategy is introduced for their toposelective functionalization with noble metal nanoparticles through galvanic displacement. Selectively edge-decorated transition metal dichalcogenides nanosheets are successfully produced with gold, palladium, or platinum nanoparticles, showing tunable loading and size. As proof of concept, the hybrid systems are tested for optical and photothermal sensing, as well as electrocatalysis and electronics, demonstrating their enhanced functionality and broad applicability. These findings pave the way for the versatile production of mixed-dimensional multifunctional materials, achieved by harnessing the defective nature of solution-processed transition metal dichalcogenides via molecular chemistry approaches.

Details

OriginalspracheEnglisch
Aufsatznummere06605
FachzeitschriftAdvanced materials
Jahrgang37
Ausgabenummer43
Frühes Online-Datum16 Aug. 2025
PublikationsstatusVeröffentlicht - 29 Okt. 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40817804

Schlagworte

Schlagwörter

  • 2D materials, defect engineering, mixed-dimensional materials, multifunctional hybrid system