Topological morphogenesis of neuroepithelial organoids

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Keisuke Ishihara - , Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD), Technische Universität Dresden, Research Institute of Molecular Pathology (IMP), University of Pittsburgh (Autor:in)
  • Arghyadip Mukherjee - , Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD), Laboratoire de physique de l’École Normale Supérieure (Autor:in)
  • Elena Gromberg - , Research Institute of Molecular Pathology (IMP) (Autor:in)
  • Jan Brugués - , Exzellenzcluster PoL: Physik des Lebens, Professur für die Organisation Subzelluärer Strukturen in Raum und Zeit (CMCB), Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Elly M. Tanaka - , Research Institute of Molecular Pathology (IMP) (Autor:in)
  • Frank Jülicher - , Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD), Technische Universität Dresden (Autor:in)

Abstract

Animal organs exhibit complex topologies involving cavities and tubular networks, which underlie their form and function1–3. However, how topology emerges during the development of organ shape, or morphogenesis, remains elusive. Here we combine tissue reconstitution and quantitative microscopy to show that tissue topology and shape is governed by two distinct modes of topological transitions4,5. One mode involves the fusion of two separate epithelia and the other involves the fusion of two ends of the same epithelium. The morphological space is captured by a single control parameter that can be traced back to the relative rates of the two epithelial fusion modes. Finally, we identify a pharmacologically accessible pathway that regulates the frequency of two modes of epithelial fusion, and demonstrate the control of organoid topology and shape. The physical principles uncovered here provide fundamental insights into the self-organization of complex tissues6.

Details

OriginalspracheEnglisch
Seiten (von - bis)177-183
Seitenumfang7
FachzeitschriftNature physics
Jahrgang19(2023)
Ausgabenummer2
Frühes Online-Datum21 Nov. 2022
PublikationsstatusVeröffentlicht - Feb. 2023
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte