Tool Chain to Extract and Contextualize Process Data for AI Applications

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Summarizing a key use case of a research workstream of the German publicly funded KEEN project, methods and tool chains are demonstrated to extract and to contextualize process data in an automated way based on engineering information. The contextualized process data serves as a high-quality data source for machine learning methods. The article covers the applied basic methodical approaches, design decisions and the results of a successful pilot installation of the developed tool chain.

Details

OriginalspracheEnglisch
Seiten (von - bis)1070-1076
Seitenumfang7
FachzeitschriftChemie Ingenieur Technik
Jahrgang95
Ausgabenummer7
PublikationsstatusVeröffentlicht - 21 Apr. 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85152526368
Mendeley 471ec302-938e-3516-a50f-4c723816a0db
WOS 000971665200001
ORCID /0009-0000-3287-0295/work/142237521
ORCID /0000-0001-8719-5741/work/173053658

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • artificial intelligence, Data contextualization, Data management, Process industry, Tool chain, Artificial intelligence