Thermoelectric transport properties of Si, SiGe, and silicide CMOS-compatible thin films

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Caroline Schwinge - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Raik Hoffmann - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Johannes Hertel - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Marcus Wislicenus - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Lukas Gerlich - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Friedemann Völklein - , Hochschule RheinMain (Autor:in)
  • Gerald Gerlach - , Professur für Festkörperelektronik (Autor:in)
  • Maik Wagner-Reetz - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)

Abstract

Characterization of thermoelectric transport properties for temperature sensing, cooling, and energy harvesting applications is necessary for a reliable device performance in progressively minimized computer chips. In this contribution, we present a fully automated thermovoltage and sheet resistance measurement setup, which is calibrated and tested for the production of silicon- and silicon-germanium-doped as well as silicide complementary metal-oxide-semiconductor-compatible thin films. A LabVIEW-programmed software application automatically controls the measurement and recording of thermovoltages at individually defined temperature set points. The setup maps average temperature and temperature differences simultaneously in the regime from 40 to 70 °C. The Seebeck coefficient calculated by means of the inversion method was used to eliminate the offset voltage influence. Finally, we present and discuss the Seebeck coefficient as well as the sheet resistance for application-specific different temperature set points of several doped poly-Si, poly-SiGe, and silicides.

Details

OriginalspracheEnglisch
Aufsatznummer105002
FachzeitschriftReview of scientific instruments
Jahrgang94
Ausgabenummer10
PublikationsstatusVeröffentlicht - 1 Okt. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 37791862

Schlagworte

ASJC Scopus Sachgebiete