The Poisson Ratio of the Cellular Actin Cortex Is Frequency Dependent

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Cell shape changes are vital for many physiological processes such as cell proliferation, cell migration, and morphogenesis. They emerge from an orchestrated interplay of active cellular force generation and passive cellular force response, both crucially influenced by the actin cytoskeleton. To model cellular force response and deformation, cell mechanical models commonly describe the actin cytoskeleton as a contractile isotropic incompressible material. However, in particular at slow frequencies, there is no compelling reason to assume incompressibility because the water content of the cytoskeleton may change. Here, we challenge the assumption of incompressibility by comparing computer simulations of an isotropic actin cortex with tunable Poisson ratio to measured cellular force response. Comparing simulation results and experimental data, we determine the Poisson ratio of the cortex in a frequency-dependent manner. We find that the Poisson ratio of the cortex decreases in the measured frequency regime analogous to trends reported for the Poisson ratio of glassy materials. Our results therefore indicate that actin cortex compression or dilation is possible in response to acting forces at sufficiently fast timescales. This finding has important implications for the parameterization in active gel theories that describe actin cytoskeletal dynamics.

Details

OriginalspracheEnglisch
Seiten (von - bis)1968-1976
Seitenumfang9
FachzeitschriftBiophysical journal
Jahrgang118
Ausgabenummer8
PublikationsstatusVeröffentlicht - 21 Apr. 2020
Peer-Review-StatusJa

Externe IDs

PubMedCentral PMC7175418
Scopus 85082122253
ORCID /0000-0002-2433-916X/work/142250429

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Actin Cytoskeleton, Actins, Cytoskeleton, Microscopy, Atomic Force, Models, Biological

Bibliotheksschlagworte