The molecular basis for pore pattern morphogenesis in diatom silica
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein-protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid-liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | e2211549119 |
Fachzeitschrift | Proceedings of the National Academy of Sciences of the United States of America : PNAS |
Jahrgang | 119 |
Ausgabenummer | 49 |
Publikationsstatus | Veröffentlicht - 2 Dez. 2022 |
Peer-Review-Status | Ja |
Externe IDs
PubMed | 36459651 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
ASJC Scopus Sachgebiete
Schlagwörter
- ankyrin-repeat domain, biomineralization, mesoporous silica, phase separation, silica deposition vesicle, Silicon Dioxide, Biomineralization, Ankyrin Repeat, Morphogenesis/genetics, Diatoms/genetics