The Liouville theorem for a class of Fourier multipliers and its connection to coupling

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

The classical Liouville property says that all bounded harmonic functions in (Formula presented.), that is, all bounded functions satisfying (Formula presented.), are constant. In this paper, we obtain necessary and sufficient conditions on the symbol of a Fourier multiplier operator (Formula presented.), such that the solutions (Formula presented.) to (Formula presented.) are Lebesgue a.e. constant (if (Formula presented.) is bounded) or coincide Lebesgue a.e. with a polynomial (if (Formula presented.) is polynomially bounded). The class of Fourier multipliers includes the (in general non-local) generators of Lévy processes. For generators of Lévy processes, we obtain necessary and sufficient conditions for a strong Liouville theorem where (Formula presented.) is positive and grows at most exponentially fast. As an application of our results above, we prove a coupling result for space-time Lévy processes.

Details

OriginalspracheEnglisch
Seiten (von - bis)2374 - 2394
Seitenumfang21
FachzeitschriftBulletin of the London Mathematical Society
Jahrgang56
Ausgabenummer7
PublikationsstatusVeröffentlicht - Juli 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85192534826

Schlagworte