Tackling Industrial Downtimes with Artificial Intelligence in Data-Driven Maintenance

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

The application of Artificial Intelligence (AI) approaches in industrial maintenance for fault detection and prediction has gained much attention from scholars and practitioners. This survey systematically assesses and classifies the state-of-the-art algorithms applied to data-driven maintenance in recent literature. The taxonomy provides a so far not existing overview and decision aid for research and practice regarding suitable AI approaches for each maintenance application. Moreover, we consider trends and further research demand in this area. Finally, a newly developed holistic maintenance framework contributes to a practice-oriented implementation of AI and considers crucial managerial aspects of an efficient maintenance system.

Details

OriginalspracheEnglisch
Aufsatznummer82
Seiten (von - bis)1–33
Seitenumfang33
FachzeitschriftACM Computing Surveys
Jahrgang56
Ausgabenummer4
Frühes Online-Datum23 Okt. 2023
PublikationsstatusVeröffentlicht - Apr. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-6942-3763/work/142252952
ORCID /0000-0002-1617-1520/work/142254885
Mendeley ba42d14f-1dfe-3e1f-b771-2b9280af86ce
unpaywall 10.1145/3623378
Scopus 85179134269

Schlagworte

Schlagwörter

  • Artificial Intelligence, condition monitoring, machine learning, Predictive maintenance, prescriptive maintenance, RUL

Bibliotheksschlagworte