Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Abstraction is a key verification technique to improve scalability. However, its use for neural networks is so far extremely limited. Previous approaches for abstracting classification networks replace several neurons with one of them that is similar enough. We can classify the similarity as defined either syntactically (using quantities on the connections between neurons) or semantically (on the activation values of neurons for various inputs). Unfortunately, the previous approaches only achieve moderate reductions, when implemented at all. In this work, we provide a more flexible framework, where a neuron can be replaced with a linear combination of other neurons, improving the reduction. We apply this approach both on syntactic and semantic abstractions, and implement and evaluate them experimentally. Further, we introduce a refinement method for our abstractions, allowing for finding a better balance between reduction and precision.
Details
Originalsprache | Englisch |
---|---|
Titel | Automated Technology for Verification and Analysis |
Redakteure/-innen | Étienne André, Jun Sun |
Herausgeber (Verlag) | Springer, Cham |
Seiten | 401-421 |
Seitenumfang | 21 |
ISBN (elektronisch) | 978-3-031-45329-8 |
ISBN (Print) | 978-3-031-45328-1 |
Publikationsstatus | Veröffentlicht - 2023 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science, Volume 14215 |
---|---|
ISSN | 0302-9743 |
Externe IDs
Scopus | 85175948369 |
---|---|
ORCID | /0000-0002-3437-0240/work/165454710 |