Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Oliver Lester Saldanha - , Else Kröner Fresenius Zentrum für Digitale Gesundheit, Universitätsklinikum Aachen (Autor:in)
  • Jiefu Zhu - , Else Kröner Fresenius Zentrum für Digitale Gesundheit (Autor:in)
  • Gustav Müller-Franzes - , Universitätsklinikum Aachen (Autor:in)
  • Zunamys I. Carrero - , Universitätsklinikum Aachen (Autor:in)
  • Nicholas R. Payne - , University of Cambridge (Autor:in)
  • Lorena Escudero Sánchez - , University of Cambridge, Cancer Research UK (Autor:in)
  • Paul Christophe Varoutas - , Mitera Hospital (Autor:in)
  • Sreenath Kyathanahally - , Universität Zürich, b-rayZ AG (Autor:in)
  • Narmin Ghaffari Laleh - , Else Kröner Fresenius Zentrum für Digitale Gesundheit (Autor:in)
  • Kevin Pfeiffer - , Else Kröner Fresenius Zentrum für Digitale Gesundheit (Autor:in)
  • Marta Ligero - , Else Kröner Fresenius Zentrum für Digitale Gesundheit (Autor:in)
  • Jakob Behner - , Else Kröner Fresenius Zentrum für Digitale Gesundheit (EKFZ) (Autor:in)
  • Kamarul A. Abdullah - , University of Cambridge, Universiti Sultan Zainal Abidin (Autor:in)
  • Georgios Apostolakos - , Mitera Hospital (Autor:in)
  • Chrysafoula Kolofousi - , Mitera Hospital (Autor:in)
  • Antri Kleanthous - , Mitera Hospital (Autor:in)
  • Michail Kalogeropoulos - , Mitera Hospital (Autor:in)
  • Cristina Rossi - , Universität Zürich, b-rayZ AG (Autor:in)
  • Sylwia Nowakowska - , Universität Zürich (Autor:in)
  • Alexandra Athanasiou - , Mitera Hospital (Autor:in)
  • Raquel Perez-Lopez - , Vall d'Hebron Institute of Oncology (VHIO) (Autor:in)
  • Ritse Mann - , Radboud University Nijmegen, Netherlands Cancer Institute (Autor:in)
  • Wouter Veldhuis - , Utrecht University (Autor:in)
  • Julia Camps - , Grupo sanitario Ribera (Autor:in)
  • Volkmar Schulz - , Fraunhofer-Institut für Digitale Medizin MEVIS, Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Markus Wenzel - , Fraunhofer-Institut für Digitale Medizin MEVIS, Constructor University (Autor:in)
  • Sergey Morozov - , European Society of Medical Imaging Informatics (EuSoMII) (Autor:in)
  • Alexander Ciritsis - , Universität Zürich (Autor:in)
  • Christiane Kuhl - , Universitätsklinikum Aachen (Autor:in)
  • Fiona J. Gilbert - , University of Cambridge (Autor:in)
  • Daniel Truhn - , Universitätsklinikum Aachen (Autor:in)
  • Jakob Nikolas Kather - , Else Kröner Fresenius Zentrum für Digitale Gesundheit, Medizinische Klinik und Poliklinik I, Nationales Zentrum für Tumorerkrankungen (NCT) Heidelberg (Autor:in)

Abstract

Background: Over the next 5 years, new breast cancer screening guidelines recommending magnetic resonance imaging (MRI) for certain patients will significantly increase the volume of imaging data to be analyzed. While this increase poses challenges for radiologists, artificial intelligence (AI) offers potential solutions to manage this workload. However, the development of AI models is often hindered by manual annotation requirements and strict data-sharing regulations between institutions. Methods: In this study, we present an integrated pipeline combining weakly supervised learning—reducing the need for detailed annotations—with local AI model training via swarm learning (SL), which circumvents centralized data sharing. We utilized three datasets comprising 1372 female bilateral breast MRI exams from institutions in three countries: the United States (US), Switzerland, and the United Kingdom (UK) to train models. These models were then validated on two external datasets consisting of 649 bilateral breast MRI exams from Germany and Greece. Results: Upon systematically benchmarking various weakly supervised two-dimensional (2D) and three-dimensional (3D) deep learning (DL) methods, we find that the 3D-ResNet-101 demonstrates superior performance. By implementing a real-world SL setup across three international centers, we observe that these collaboratively trained models outperform those trained locally. Even with a smaller dataset, we demonstrate the practical feasibility of deploying SL internationally with on-site data processing, addressing challenges such as data privacy and annotation variability. Conclusions: Combining weakly supervised learning with SL enhances inter-institutional collaboration, improving the utility of distributed datasets for medical AI training without requiring detailed annotations or centralized data sharing.

Details

OriginalspracheEnglisch
Aufsatznummer38
Seitenumfang12
FachzeitschriftCommunications medicine
Jahrgang5
Ausgabenummer1
PublikationsstatusVeröffentlicht - 6 Feb. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8501-1566/work/184442953
PubMed 39915630
ORCID /0009-0000-7643-4284/work/190572747
ORCID /0000-0002-3730-5348/work/198594662