Swarm learning for decentralized artificial intelligence in cancer histopathology

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Oliver Lester Saldanha - , Universitätsklinikum Aachen (Autor:in)
  • Philip Quirke - , University of Leeds (Autor:in)
  • Nicholas P West - , University of Leeds (Autor:in)
  • Jacqueline A James - , Queen's University Belfast (Autor:in)
  • Maurice B Loughrey - , Queen's University Belfast (Autor:in)
  • Heike I Grabsch - , University of Leeds (Autor:in)
  • Manuel Salto-Tellez - , Queen's University Belfast (Autor:in)
  • Elizabeth Alwers - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Didem Cifci - , Universitätsklinikum Aachen (Autor:in)
  • Narmin Ghaffari Laleh - , Universitätsklinikum Aachen (Autor:in)
  • Tobias Seibel - , Universitätsklinikum Aachen (Autor:in)
  • Richard Gray - , University of Oxford (Autor:in)
  • Gordon G A Hutchins - , University of Leeds (Autor:in)
  • Hermann Brenner - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Marko van Treeck - , Universitätsklinikum Aachen (Autor:in)
  • Tanwei Yuan - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Titus J Brinker - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Jenny Chang-Claude - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Firas Khader - , Universitätsklinikum Aachen (Autor:in)
  • Andreas Schuppert - , Universitätsklinikum Aachen (Autor:in)
  • Tom Luedde - , Universitätsklinikum Düsseldorf (Autor:in)
  • Christian Trautwein - , Universitätsklinikum Aachen (Autor:in)
  • Hannah Sophie Muti - , Universitätsklinikum Aachen (Autor:in)
  • Sebastian Foersch - , Universitätsmedizin Mainz (Autor:in)
  • Michael Hoffmeister - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Daniel Truhn - , Universitätsklinikum Aachen (Autor:in)
  • Jakob Nikolas Kather - , Universitätsklinikum Aachen, University of Leeds, Nationales Zentrum für Tumorerkrankungen (NCT) Heidelberg (Autor:in)

Abstract

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.

Details

OriginalspracheEnglisch
Seiten (von - bis)1232-1239
Seitenumfang8
FachzeitschriftNature medicine
Jahrgang28
Ausgabenummer6
PublikationsstatusVeröffentlicht - Juni 2022
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMedCentral PMC9205774
Scopus 85128717061

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Artificial Intelligence, Humans, Image Processing, Computer-Assisted, Neoplasms/genetics, Staining and Labeling, United Kingdom

Bibliotheksschlagworte