Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and ex Situ Characterization

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Gabriela Borin Barin - , Swiss Federal Laboratories for Materials Science and Technology (Empa) (Autor:in)
  • Andrew Fairbrother - , Swiss Federal Laboratories for Materials Science and Technology (Empa) (Autor:in)
  • Lukas Rotach - , Swiss Federal Laboratories for Materials Science and Technology (Empa) (Autor:in)
  • Maxime Bayle - , Laboratoire Charles Coulomb (Autor:in)
  • Matthieu Paillet - , Laboratoire Charles Coulomb (Autor:in)
  • Liangbo Liang - , Oak Ridge National Laboratory, Rensselaer Polytechnic Institute (Autor:in)
  • Vincent Meunier - , Rensselaer Polytechnic Institute (Autor:in)
  • Roland Hauert - , Swiss Federal Laboratories for Materials Science and Technology (Empa) (Autor:in)
  • Tim Dumslaff - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Akimitsu Narita - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Klaus Müllen - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Hafeesudeen Sahabudeen - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Reinhard Berger - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Xinliang Feng - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Roman Fasel - , Universität Bern (Autor:in)
  • Pascal Ruffieux - , Swiss Federal Laboratories for Materials Science and Technology (Empa) (Autor:in)

Abstract

Recent progress in the on-surface synthesis of graphene nanoribbons (GNRs) has given access to atomically precise narrow GNRs with tunable electronic band gaps which makes them excellent candidates for room temperature switching devices such as field-effect transistors (FET). However, in spite of their exceptional properties, significant challenges remain for GNR processing and characterization. This contribution addresses some of the most important challenges, including GNR fabrication scalability, substrate transfer, long-term stability under ambient conditions, and ex situ characterization. We focus on 7- and 9-atom-wide armchair graphene nanoribbons (i.e., 7-AGNR and 9-AGNR) grown on 200 nm Au(111)/mica substrates using a high throughput system. Transfer of both 7- and 9-AGNRs from their Au growth substrate onto various target substrates for additional characterization is accomplished utilizing a polymer-free method that avoids residual contamination. This results in a homogeneous GNR film morphology with very few tears and wrinkles, as examined by atomic force microscopy. Raman spectroscopy indicates no significant degradation of GNR quality upon substrate transfer and reveals that GNRs have remarkable stability under ambient conditions over a 24 month period. The transferred GNRs are analyzed using multiwavelength Raman spectroscopy, which provides detailed insight into the wavelength dependence of the width-specific vibrational modes. Finally, we characterize the optical properties of 7- and 9-AGNRs via ultraviolet-visible (UV-vis) spectroscopy.

Details

OriginalspracheEnglisch
Seiten (von - bis)2184-2192
Seitenumfang9
FachzeitschriftACS Applied Nano Materials
Jahrgang2
Ausgabenummer4
PublikationsstatusVeröffentlicht - 26 Apr. 2019
Peer-Review-StatusJa

Externe IDs

Scopus 85070446997

Schlagworte

Forschungsprofillinien der TU Dresden

Schlagwörter

  • atomic force microscopy, graphene nanoribbons, multiwavelength Raman spectroscopy, optical properties, scanning tunneling microscopy, substrate transfer