Surface acoustic wave spectroscopy for non-destructive coating and bulk characterization at temperatures up to 600°C enabled by piezoelectric aluminum nitride coated sensor

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Stefan Makowski - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Martin Zawischa - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Dieter Schneider - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Stephan Barth - , Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik (Autor:in)
  • Sebastian Schettler - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Thanh Tung Hoang - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Hagen Bartzsch - , Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik (Autor:in)
  • Martina Zimmermann - , Professur für Werkstoffmechanik und Schadensfallanalyse (gB/FG), Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)

Abstract

Surface acoustic wave spectroscopy has been established as non-destructive and fast method for characterization of mechanical properties of surfaces and bulk materials in both research and industry. The present work shows that by application of a novel and robust aluminum nitride (AlN) coated piezoelectric contact sensor the advantages of the method can be extended from room temperature to at least 600°C. An overview of sensor concepts and applications of the method is discussed first, followed by theoretical and practical considerations for design and coating of a novel temperature stable contact sensor. After fabrication of such a sensor using magnetron sputtering, it was tested in a modified surface acoustic wave spectroscopy setup with an incorporated heating table concerning signal amplitude and frequency range. The AlN coated sensor was found to perform well up to 600°C, with temperature limited by the specification of the heating table. At room temperature, performance was acceptable when compared with a conventional contact sensor using a PVDF piezoelectric foil. Application of the high temperature capabilities of the setup was demonstrated by measuring temperature stability of hydrogen-free amorphous carbon coatings (a-C and ta-C) depending on their sp3 carbon ratio. In another example, high precision temperature dependent measurement of Young's modulus for ultrasonic fatigue test specimen was taken, achieving an accuracy better than 1%. Use of the developed sensor opens up new possibilities in material science for in situ study of temperature depending mechanical properties for coatings and surfaces.

Details

OriginalspracheEnglisch
Seiten (von - bis)319-332
Seitenumfang14
FachzeitschriftSurface and interface analysis
Jahrgang56
Ausgabenummer5
PublikationsstatusVeröffentlicht - Mai 2024
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • AlN, coating characterization, high temperature, surface acoustic wave spectroscopy, ta-C, ultrasonic fatique