Stochastic integration with respect to canonical α-stable cylindrical Lévy processes
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this work, we introduce a theory of stochastic integration with respect to symmetric α-stable cylindrical Lévy processes. Since α-stable cylindrical Lévy processes do not enjoy a semi-martingale decomposition, our approach is based on a decoupling inequality for the tangent sequence of the Radonified increments. This approach enables us to characterise the largest space of predictable Hilbert-Schmidt operator-valued processes which are integrable with respect to an α-stable cylindrical Lévy process as the collection of all predictable processes with paths in the Bochner space Lα. We demonstrate the power and robustness of the developed theory by establishing a dominated convergence result allowing the interchange of the stochastic integral and limit.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 157 |
Fachzeitschrift | Electronic journal of probability |
Jahrgang | 27 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- cylindrical Lévy process, decoupled tangent sequence, stable processes, stochastic integration