Stochastic error propagation analysis of model-driven space robotic software implemented in simulink

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Model-driven software development methods are widely used in safety-critical domains including space robotics. TheMATLAB Simulink environment is the common choice of control engineers. This article introduces a new method for a fully automatic transformation of a Simulink model to a dualgraph model for stochastic error propagation analysis. The error propagation analysis provides important inputs for system reliability methods, required by industrial standards such as FTA and FMEA. The dual-graph error propagation model is a mathematical abstraction of key system design aspects that influence error propagation processes: control flow, data flow, and component-level reliability properties. This model helps to estimate the likelihood of error propagation to hazardous system parts and quantify the negative impact of a fault in a particular component on the overall system reliability. In praxis, the manual creation of an error propagation model of a complex system requires a huge effort. The transformation method, introduced in this article, is a fast and promising solution. The method is demonstrated as a part of a stochastic analysis of a real-world model-driven space robotic software.

Details

OriginalspracheEnglisch
TitelProceedings of the 3rd Workshop Model-Driven Robot Software Engineering, MORSE 2016
Redakteure/-innenChristian Piechnick, Davide Brugali, Uwe Assmann
Herausgeber (Verlag)Association for Computing Machinery
Seiten24-31
Seitenumfang8
ISBN (elektronisch)9781450342599
PublikationsstatusVeröffentlicht - 1 Juli 2016
Peer-Review-StatusJa

Publikationsreihe

ReiheMORSE: Model-Driven Robot Software Engineering

Konferenz

Titel3rd Workshop on Model-Driven Robot Software Engineering, MORSE 2016
Dauer1 Juli 2016
StadtLeipzig
LandDeutschland

Schlagworte

Schlagwörter

  • Control flow, Data flow, Error propagation model, Model transformation, Model-based analysis, Modeldriven software, Simulink, Space robotic software