Statistical Surveillance of the Mean Vector and the Covariance Matrix of Nonlinear Time Series

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Robert Garthoff - , Europa-Universität Viadrina (Autor:in)
  • Iryna Okhrin - , Europa-Universität Viadrina (Autor:in)
  • Wolfgang Schmid - , Europa-Universität Viadrina (Autor:in)

Abstract

The purpose of this paper is to jointly monitor the mean vector and the covariance matrix of multivariate nonlinear times series. The underlying target process is assumed to be a constant conditional correlation process Bollerslev (Rev Econ Stat 72:498–505, 1990) or a dynamic conditional correlation model Engle (J Bus Econ Stat 20:339–350, 2002). We introduce several EWMA and CUSUM control charts. These control schemes are based on univariate EWMA statistics, multivariate EWMA recursions, and different types of cumulative sums. The recursions are applied to local measures for means and covariances, e.g. the present observations and the conditional covariances. Further, they are applied to means and covariances of residuals. The control statistics are obtained by computing the Mahalanobis distance between the EWMA or CUSUM statistics and their expectations if no change occurs. Via Monte Carlo simulation the performance of the proposed charts is compared. Our empirical study illustrates an application of these control procedures to bivariate logarithmic returns of the European indices FTSE100 and DAX. In order to assess the performance of the introduced schemes we apply the average run length and the maximum conditional expected delay.

Details

OriginalspracheEnglisch
Seiten (von - bis)225-255
Seitenumfang31
FachzeitschriftAStA Advances in Statistical Analysis
Jahrgang98
Ausgabenummer3
PublikationsstatusVeröffentlicht - 2014
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 84903888805
ORCID /0000-0002-9732-9405/work/173987782

Schlagworte

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Statistical process Control, Multivariate CUSUM charts, Multivariate EWMA charts, Conditional correlation model