StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Elke Kunisch - , Universität Heidelberg (Autor:in)
  • Anne Kathrin Knauf - , Universität Heidelberg, Universität Leipzig (Autor:in)
  • Eliane Hesse - , Universität Heidelberg (Autor:in)
  • Uwe Freudenberg - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Carsten Werner - , Professur für Biofunktionale Polymermaterialien (gB/IPF), Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Friederike Bothe - , Universität Heidelberg (Autor:in)
  • Solvig Diederichs - , Universität Heidelberg (Autor:in)
  • Wiltrud Richter - , Universität Heidelberg (Autor:in)

Abstract

Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin-or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.

Details

OriginalspracheEnglisch
Aufsatznummer015001
FachzeitschriftBiofabrication
Jahrgang11
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2019
Peer-Review-StatusJa

Externe IDs

PubMed 30376451
ORCID /0000-0003-0189-3448/work/161890321

Schlagworte

Schlagwörter

  • Calcified cartilage, Chondrocyte, Hydrogel, Layered construct, Mesenchymal stroma cells