Stability of singular solutions of nonlinear equations with restricted smoothness assumptions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

This work is concerned with conditions ensuring stability of a given solution of a system of nonlinear equations with respect to large (not asymptotically thin) classes of right-hand side perturbations. Our main focus is on those solutions that are in a sense singular, and hence, their stability properties are not guaranteed by “standard” inverse function-type theorems. In the twice differentiable case, these issues have received some attention in the existing literature. Moreover, a few results in this direction are known in the case when the first derivative is merely B-differentiable. Here, we further elaborate on a similar setting, but the main attention is paid to the case of piecewise smooth equations. Specifically, we study the effect of singularity of a solution for some active smooth selection on the overall stability properties, and we provide sufficient conditions ensuring the needed stability properties in the cases when such smooth selections may exist. Finally, an application to a piecewise smooth reformulation of complementarity problems is given.

Details

OriginalspracheEnglisch
Seiten (von - bis)1008-1035
Seitenumfang28
FachzeitschriftJournal of Optimization Theory and Applications
Jahrgang196
Ausgabenummer3
PublikationsstatusVeröffentlicht - März 2023
Peer-Review-StatusJa

Externe IDs

Mendeley fae348af-27fd-3d10-8989-407d4a94fb38
Scopus 85146624978
WOS 000915898000001
dblp journals/jota/FischerIJ23
ORCID /0000-0002-8982-2136/work/142241994

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Ziele für nachhaltige Entwicklung

Schlagwörter

  • 2-Regularity, Complementarity problem, Critical solution, Equation with Lipschitzian first derivatives, Nonisolated solution, Piecewise smooth equation, Singular solution