Spatial Attribution of Temporal Variability in Global Land-Atmosphere CO2 Exchange Using a Model-Data Integration Framework

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • H. Lee - , Juniorprofessur für Umweltfernerkundung, Max Planck Institute for Biogeochemistry (Autor:in)
  • Martin Jung - , Max Planck Institute for Biogeochemistry (Autor:in)
  • N. Carvalhais - , Max Planck Institute for Biogeochemistry, Universidade NOVA de Lisboa, Michael Stifel Center Jena for Data-driven and Simulation Science (Autor:in)
  • Markus Reichstein - , Max Planck Institute for Biogeochemistry, Michael Stifel Center Jena for Data-driven and Simulation Science (Autor:in)
  • M. Forkel - , Juniorprofessur für Umweltfernerkundung (Autor:in)
  • A. A. Bloom - , California Institute of Technology (CALTECH) (Autor:in)
  • J. Pacheco-Labrador - , Consejo Superior de Investigaciones Científicas (CSIC) (Autor:in)
  • S. Koirala - , Max Planck Institute for Biogeochemistry (Autor:in)

Abstract

The spatial contribution to the global land-atmosphere carbon dioxide (CO2) exchange is crucial in understanding and projecting the global carbon cycle, yet different studies diverge on the dominant regions. Informing land models with observational data is a promising way to reduce the parameter and structural uncertainties and advance our understanding. Here, we develop a parsimonious diagnostic process-based model of land carbon cycles, constraining parameters with observation-based products. We compare CO2 flux estimates from our model with observational constraints and Trends in Net Land-Atmosphere Carbon Exchange (TRENDY) model ensemble to show that our model reasonably reproduces the seasonality of net ecosystem exchange (NEE) and gross primary productivity (GPP) and interannual variability (IAV) of NEE. Finally, we use the developed model, TRENDY models, and observational constraints to attribute variability in global NEE and GPP to regional variability. The attribution analysis confirms the dominance of Northern temperate and boreal regions in the seasonality of CO2 fluxes. Regarding NEE IAV, we identify a significant contribution from tropical savanna regions as previously perceived. Furthermore, we highlight that tropical humid regions are also identified as at least equally relevant contributors as semi-arid regions. At the same time, the largest uncertainty among ensemble members of NEE constraint and TRENDY models in the tropical humid regions underscore the necessity of better process understanding and more observations in these regions. Overall, our study identifies tropical humid regions as key regions for global land-atmosphere CO2 exchanges and the inter-model spread of its modeling.

Details

OriginalspracheEnglisch
Aufsatznummere2024MS004479
FachzeitschriftJournal of advances in modeling earth systems
Jahrgang17
Ausgabenummer3
PublikationsstatusVeröffentlicht - März 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0363-9697/work/183564761

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Schlagwörter

  • attribution, carbon dioxide, interannual variability, land-atmosphere interaction, model-data integration