Scanner-Based Direct Laser Interference Patterning on Stainless Steel

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Aleksander Madelung - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Sabri Alamri - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Tobias Steege - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Benjamin Krupop - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Andres Fabian Lasagni - , Professur für Laserbasierte Fertigung, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Tim Kunze - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)

Abstract

Direct laser interference patterning (DLIP) so far has been used almost exclusively in combination with mechanical translation stages reaching impressive throughputs for very specific configurations. As an alternative, DLIP modules can be combined with laser scanners, however presenting some limitations in comparison with standard static optical setups due to the limited possible spatial separation between the interfering beams. Herein, the fabrication of periodic microstructures on stainless steel using a galvanometer-scanner DLIP approach is addressed. Line-like patterns with spatial periods ranging from 2.9 to 12.8 μm are produced using a nanosecond pulsed laser source operating at a wavelength of 527 nm. The scan fields generated are evaluated with respect to the structure quality and scan field size, with dependence on the spatial period. Furthermore, the correlation between the spatial period, laser fluence, total number of pulses, and resulting structure depth of the line-like patterns is discussed. In addition, the optimization of process parameters leads to surface patterns with aspect ratios greater than 1. The achievable structuring speeds are determined under consideration of the used number of pulses. Finally, throughputs up to 7.69 cm 2 min −1 with less than 0.5 W laser power at a repetition rate of 3.5 kHz are realized.

Details

OriginalspracheEnglisch
Aufsatznummer2001414
Seitenumfang10
FachzeitschriftAdvanced engineering materials
Jahrgang23
Ausgabenummer6
Frühes Online-DatumMärz 2021
PublikationsstatusVeröffentlicht - Juni 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85101944614
ORCID /0000-0003-4333-4636/work/196675441

Schlagworte

Schlagwörter

  • direct laser interference patterning, galvanometer scanners, high throughput, line-like patterns, nanosecond laser pulses