Scale-Specific Viscoelastic Characterization of Hydrogels: Integrated AFM and Finite Element Modeling

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Nicole Fertala - , Max Bergmann Zentrum für Biomaterialien Dresden (MBZ) (Autor:in)
  • Klemens Uhlmann - , Ruhr-Universität Bochum (Autor:in)
  • Evgeny Grigoryev - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Prannoy Seth - , Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Zentrum für Biomaterialien Dresden (MBZ) (Autor:in)
  • Jens Friedrichs - , Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Zentrum für Biomaterialien Dresden (MBZ) (Autor:in)
  • Julian Thiele - , Leibniz-Institut für Polymerforschung Dresden, Otto-von-Guericke-Universität Magdeburg (Autor:in)
  • Carsten Werner - , Professur für Biofunktionelle Polymermaterialien (gB/IPF), Exzellenzcluster PoL: Physik des Lebens, Center for Regenerative Therapies Dresden (CRTD), Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Zentrum für Biomaterialien Dresden (MBZ) (Autor:in)
  • Daniel Balzani - , Ruhr-Universität Bochum (Autor:in)

Abstract

Viscoelastic hydrogels mimic the dynamic mechanical properties of native extracellular matrices, making them essential for biomedical applications. However, characterizing their scale-dependent mechanical properties remains challenging, despite their critical influence on cell-material interactions and biomaterial performance. Here, an integrated experimental-computational approach is presented to quantify and model the viscoelastic behavior of interpenetrating polymer network hydrogels across micro- and macro-scales. Atomic force microscopy-based stress relaxation tests revealed that microgels exhibit rapid, localized relaxation, while macroscopic bulk gels displayed prolonged relaxation dominated by poroelastic effects. Finite element simulations accurately replicated experimental conditions, enabling the extraction of key parameters: fully relaxed elastic modulus, relaxation modulus, and relaxation time constant. A novel analytical model is further developed to predict viscoelastic parameters from experimental data with minimal error (<6%), significantly streamlining characterization. The findings highlight the necessity of scale-specific mechanical analysis and provide a robust platform for designing biomaterials with tailored viscoelasticity for tissue engineering and regenerative medicine.

Details

OriginalspracheEnglisch
Aufsatznummere07835
FachzeitschriftSmall
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - Dez. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-0189-3448/work/199958504

Schlagworte

Schlagwörter

  • atomic force microscopy, finite element modeling, interpenetrating polymer networks, scale-dependent mechanics, viscoelastic hydrogels