Robustness of convolutional neural networks in recognition of pigmented skin lesions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Roman C Maron - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Sarah Haggenmüller - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Christof von Kalle - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Jochen S Utikal - , SRH Hochschule Heidelberg (Autor:in)
  • Friedegund Meier - , Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Frank F Gellrich - , Klinik und Poliklinik für Dermatologie, Nationales Zentrum für Tumorerkrankungen (NCT) Dresden, Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Axel Hauschild - , Universitätsklinikum Schleswig-Holstein Campus Kiel (Autor:in)
  • Lars E French - , Hospital de Basurto (Autor:in)
  • Max Schlaak - , Hospital de Basurto (Autor:in)
  • Kamran Ghoreschi - , Klinik und Poliklinik für Dermatologie (Autor:in)
  • Heinz Kutzner - , Dermatopathology Laboratory (Autor:in)
  • Markus V Heppt - , Staatliche Berufsfachschulen am Universitätsklinikum Erlangen (Autor:in)
  • Sebastian Haferkamp - , Universitätsklinikum Regensburg (Autor:in)
  • Wiebke Sondermann - , Universitätsklinikum Essen (Autor:in)
  • Dirk Schadendorf - , Universitätsklinikum Essen (Autor:in)
  • Bastian Schilling - , Universitätsklinikum Würzburg (Autor:in)
  • Achim Hekler - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Eva Krieghoff-Henning - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Jakob N Kather - , Else Kröner Fresenius Zentrum für Digitale Gesundheit, Nationales Zentrum für Tumorerkrankungen (NCT) Heidelberg, Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Stefan Fröhling - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Daniel B Lipka - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Titus J Brinker - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)

Abstract

BACKGROUND: A basic requirement for artificial intelligence (AI)-based image analysis systems, which are to be integrated into clinical practice, is a high robustness. Minor changes in how those images are acquired, for example, during routine skin cancer screening, should not change the diagnosis of such assistance systems.

OBJECTIVE: To quantify to what extent minor image perturbations affect the convolutional neural network (CNN)-mediated skin lesion classification and to evaluate three possible solutions for this problem (additional data augmentation, test-time augmentation, anti-aliasing).

METHODS: We trained three commonly used CNN architectures to differentiate between dermoscopic melanoma and nevus images. Subsequently, their performance and susceptibility to minor changes ('brittleness') was tested on two distinct test sets with multiple images per lesion. For the first set, image changes, such as rotations or zooms, were generated artificially. The second set contained natural changes that stemmed from multiple photographs taken of the same lesions.

RESULTS: All architectures exhibited brittleness on the artificial and natural test set. The three reviewed methods were able to decrease brittleness to varying degrees while still maintaining performance. The observed improvement was greater for the artificial than for the natural test set, where enhancements were minor.

CONCLUSIONS: Minor image changes, relatively inconspicuous for humans, can have an effect on the robustness of CNNs differentiating skin lesions. By the methods tested here, this effect can be reduced, but not fully eliminated. Thus, further research to sustain the performance of AI classifiers is needed to facilitate the translation of such systems into the clinic.

Details

OriginalspracheEnglisch
Seiten (von - bis)81-91
Seitenumfang11
FachzeitschriftEuropean journal of cancer
Jahrgang145
PublikationsstatusVeröffentlicht - März 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85099254625
ORCID /0000-0002-2164-4644/work/148607198

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Dermoscopy, Diagnosis, Computer-Assisted, Diagnosis, Differential, Humans, Image Interpretation, Computer-Assisted, Melanoma/pathology, Neural Networks, Computer, Nevus/pathology, Predictive Value of Tests, Reproducibility of Results, Skin Neoplasms/pathology