Regional differences in progenitor metabolism shape brain growth during development

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragen

Beitragende

  • Natalia Baumann - , Universität Genf (Autor:in)
  • Robin J Wagener - , Universität Genf (Autor:in)
  • Awais Javed - , Universität Genf (Autor:in)
  • Eleonora Conti - , Human Technopole (Autor:in)
  • Philipp Abe - , Institut für Klinische Genetik, Universitätsklinikum Carl Gustav Carus Dresden, Universität Genf (Autor:in)
  • Andrea Lopes - , Universität Genf (Autor:in)
  • Roberto Sansevrino - , Human Technopole (Autor:in)
  • Adrien Lavalley - , Universität Genf (Autor:in)
  • Elia Magrinelli - , Universität Genf (Autor:in)
  • Timea Szalai - , Universität Genf (Autor:in)
  • Daniel Fuciec - , Universität Genf (Autor:in)
  • Clothilde Ferreira - , Universität Genf (Autor:in)
  • Sabine Fièvre - , Universität Genf (Autor:in)
  • Andreane Fouassier - , Amazentis SA (Autor:in)
  • Davide D'Amico - , Amazentis SA (Autor:in)
  • Oliver Harschnitz - , Human Technopole (Autor:in)
  • Denis Jabaudon - , Université Paris Cité, Universität Genf, Hôpitaux universitaires de Genève, Institut des maladies génétiques Imagine (Autor:in)

Abstract

Mammals have particularly large forebrains compared with other brain parts, yet the developmental mechanisms underlying this regional expansion remain poorly understood. Here, we provide a single-cell-resolution birthdate atlas of the mouse brain (www.neurobirth.org), which reveals that while hindbrain neurogenesis is transient and restricted to early development, forebrain neurogenesis is temporally sustained through reduced consumptive divisions of ventricular zone progenitors. This atlas additionally reveals region-specific patterns of direct and indirect neurogenesis. Using single-cell RNA sequencing, we identify evolutionarily conserved cell-cycle programs and metabolism-related molecular pathways that control regional temporal windows of proliferation. We identify the late neocortex-enriched mitochondrial protein FAM210B as a key regulator using in vivo gain- and loss-of-function experiments. FAM210B elongates mitochondria and increases lactate production, which promotes progenitor self-replicative divisions and, ultimately, the larger clonal size of their progeny. Together, these findings indicate that spatiotemporal heterogeneity in mitochondrial function regulates regional progenitor cycling behavior and associated clonal neuronal production during brain development.

Details

OriginalspracheEnglisch
Seiten (von - bis)3567-3582.e20
FachzeitschriftCell
Jahrgang188
Ausgabenummer13
PublikationsstatusVeröffentlicht - 26 Juni 2025
Peer-Review-StatusNein

Externe IDs

Scopus 105003757188
ORCID /0000-0002-8067-1802/work/187085218

Schlagworte

Schlagwörter

  • Animals, Brain/metabolism, Cell Proliferation, Female, Male, Mice, Mice, Inbred C57BL, Mitochondria/metabolism, Neural Stem Cells/metabolism, Neurogenesis, Neurons/metabolism, Single-Cell Analysis, brain development, progenitor diversity, mitochondria dynamics, metabolism