Recognizing and Integrating Legacy Assembly Diagrams into Industry 4.0

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Legacy assembly diagrams, often provided as machine-unreadable images, hinder integration into the Industry 4.0 (I4.0) ecosystem. We propose a multi-step pipeline leveraging Large Language Models as a single simple-to-operate tool to recognize parts, relationships, and global identifiers, segment parts in images, and structure the data into Asset Administration Shell as I4.0 digital twins. Targeted prompts are designed for each step and evaluated on 15 diverse real-world diagrams. Results show that while the LLM reliably recognizes parts and link identifiers, there are still some open challenges with relationship extraction and semantic segmentation. Despite these limitations, LLMs provide a viable tool for semi-automated digitalization. Our end-to-end pipeline thus enables seamless integration of legacy diagrams into I4.0 systems.

Details

OriginalspracheEnglisch
TitelIECON 2025 – 51st Annual Conference of the IEEE Industrial Electronics Society
Herausgeber (Verlag)IEEE Industrial Electronics Society
Seiten1-6
Seitenumfang6
ISBN (elektronisch)9798331596811
ISBN (Print)979-8-3315-9682-8
PublikationsstatusVeröffentlicht - 17 Okt. 2025
Peer-Review-StatusJa

Konferenz

Titel51st Annual Conference of the IEEE Industrial Electronics Society
KurztitelIECON 2025
Veranstaltungsnummer51
Dauer14 - 17 Oktober 2025
Webseite
OrtHotel Meliá Castilla
StadtMadrid
LandSpanien

Externe IDs

ORCID /0000-0002-4646-4455/work/199961442
ORCID /0009-0000-2432-5529/work/199961653

Schlagworte

Schlagwörter

  • Assembly, Explosions, Fourth Industrial Revolution, Image recognition, Industrial electronics, Large language models, Periodic structures, Pipelines, Reliability, Semantic segmentation