Real-time Destination and ETA Prediction for Maritime Traffic

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

Abstract

In this paper, we present our approach for solving the DEBS Grand Challenge 2018. The challenge asks to provide a prediction for (i) a destination and the (ii) arrival time of ships in a streaming-fashion using Geo-spatial data in the maritime context. Novel aspects of our approach include the use of ensemble learning based on Random Forest, Gradient Boosting Decision Trees (GBDT), XGBoost Trees and Extremely Randomized Trees (ERT) in order to provide a prediction for a destination while for the arrival time, we propose the use of Feed-forward Neural Networks. In our evaluation, we were able to achieve an accuracy of 97% for the port destination classification problem and 90% (in mins) for the ETA prediction.

Details

OriginalspracheEnglisch
Seiten198-201
Seitenumfang4
PublikationsstatusVeröffentlicht - 2018
Peer-Review-StatusJa

Konferenz

Titel12th ACM International Conference on Distributed and Event-based Systems
KurztitelDEBS '18
Veranstaltungsnummer
Dauer25 - 29 Januar 2018
BekanntheitsgradInternationale Veranstaltung
Ort
StadtHamilton
LandNeuseeland

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium

Schlagwörter

  • Destination Prediction, ETA Prediction, Event Stream Processing, Geo-spatial Analysis, Machine Learning, ESP