Quantum Machine Learning for Controller Placement in Software Defined Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

As the number of dynamic applications grows, so does the demand for Network Programming Interoperability, resulting in the birth of Software Defined Networking. Novel sources, including quantum technologies, are required to enable the shift to a software-centric and autonomous next-generation 6G network with integrated intelligence. In this research, we use quantum machine learning to provide a unique technique for addressing the issue of SDN controller placement inside a multi-controller. We evaluate the proposed strategy's efficacy by analyzing simulation results and considering the polylogarithmic computational cost associated with QML algorithms. The evaluation, focused on latency metrics, reveals that QML can resolve the SDN clustering problem with latencies equivalent to those observed in classical machine learning methods such as K-means. This study marks the first application of QML to the controller placement issue in SDN, signifying its potential to influence the design and development of future 6G networks and the quantum internet.

Details

OriginalspracheEnglisch
Titel28th European Wireless Conference, EW 2023
Herausgeber (Verlag)VDE Verlag, Berlin [u. a.]
Seiten382-387
Seitenumfang6
ISBN (elektronisch)9783800762262
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Konferenz

Titel28th European Wireless Conference
Untertitel6G driving a sustainable growth
KurztitelEW 2023
Veranstaltungsnummer28
Dauer2 - 4 Oktober 2023
StadtRome
LandItalien

Externe IDs

ORCID /0000-0001-8469-9573/work/161891366

Schlagworte

Schlagwörter

  • Controller Placement, K-means cluster, Quantum Computing, Quantum Machine Learning, SDN