Quantum entanglement resource utilization in quantum-classical networking

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

This work presents a hybrid quantum–classical architecture that converts entanglement-derived resources including ultra-precise timing, private/common randomness and certified entropy into first-class primitives for 5G networks. Semiconductor quantum-dot sources and correlation electronics distribute photon-pair coincidences, while a layered protocol stack exposes the resulting services to 5G core functions. As a proof-of-concept, we embed a quantum-random-number generator (QRNG) into the 5G Authentication and Key Agreement (AKA) procedure, replacing the pseudo-random RAND generator in Open5GS with an HTTP-served QRNG feed. A simulation of sequential UE attachments shows that the QRNG path increases cumulative control-plane latency by ≈12% and produces isolated Round-Trip-Time (RTT) spikes, yet leaves data-plane efficiency largely unchanged: delivery rate matches the baseline while a flatter pacing profile lowers the risk of queue build-up. These results quantify the performance trade-off of QRNG-enhanced 5G and motivate tighter in-process or hardware QRNG integration in future quantum-enabled mobile networks.

Details

OriginalspracheEnglisch
Aufsatznummer100829
FachzeitschriftOptical Switching and Networking
Jahrgang58
PublikationsstatusVeröffentlicht - Dez. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8469-9573/work/195439611

Schlagworte

Schlagwörter

  • Hybrid network, Quantum, Quantum-classical, TCP-IP