Qualitative analysis of two systems of nonlinear first-order ordinary differential equations for biological systems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We consider two systems of nonlinear first-order ordinary differential equations proposed to describe (Formula presented.) -levels in renal vascular smooth muscle cells and in liver cells. Initially, we present the models and its assumptions. We next investigate an approach to local solvability by Picard–Lindelöf 's Theorem. Further, we prove nonnegativity of the systems' possible solutions and we especially conclude global unique existence of the models' solutions by Gronwall-type arguments and the concept of trapping regions. After finishing our theoretical part with some aspects of stability analysis, we provide evidence of our findings by some numerical experiments.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 4597-4624 |
Seitenumfang | 28 |
Fachzeitschrift | Mathematical Methods in the Applied Sciences |
Jahrgang | 45 |
Ausgabenummer | 8 |
Publikationsstatus | Veröffentlicht - 10 Jan. 2022 |
Peer-Review-Status | Ja |
Externe IDs
unpaywall | 10.1002/mma.8056 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
ASJC Scopus Sachgebiete
Schlagwörter
- dynamical systems, first-order nonlinear ordinary differential equations, nonnegativity, oscillations, solvability, stability, uniqueness