Proposal and extensive test of a calibration protocol for crop phenology models

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Daniel Wallach - , Universität Bonn (Autor:in)
  • Taru Palosuo - , Luke Natural Resources Institute Finland (Autor:in)
  • Peter Thorburn - , Commonwealth Scientific & Industrial Research Organisation (CSIRO) (Autor:in)
  • Henrike Mielenz - , Julius Kühn Institute - Federal Research Centre for Cultivated Plants (Autor:in)
  • Samuel Buis - , INRAE CSGA (Autor:in)
  • Zvi Hochman - , Commonwealth Scientific & Industrial Research Organisation (CSIRO) (Autor:in)
  • Emmanuelle Gourdain - (Autor:in)
  • Fety Andrianasolo - (Autor:in)
  • Benjamin Dumont - , University of Liege (Autor:in)
  • Roberto Ferrise - , Università degli Studi di Firenze (Autor:in)
  • Thomas Gaiser - , Universität Bonn (Autor:in)
  • Cecile Garcia - (Autor:in)
  • Sebastian Gayler - , Universität Hohenheim (Autor:in)
  • Matthew Harrison - , University of Tasmania (Autor:in)
  • Santosh Hiremath - , Aalto University (Autor:in)
  • Heidi Horan - , Commonwealth Scientific & Industrial Research Organisation (CSIRO) (Autor:in)
  • Gerrit Hoogenboom - , Florida State University (Autor:in)
  • Per-Erik Jansson - , KTH Royal Institute of Technology (Autor:in)
  • Qi Jing - , Agriculture and Agri-Food Canada (Autor:in)
  • Eric Justes - , Centre de coopération internationale en recherche agronomique pour le développement (Autor:in)
  • Kurt-Christian Kersebaum - , Leibniz Centre for Agricultural Landscape Research, Czech Academy of Sciences, Georg-August-Universität Göttingen (Autor:in)
  • Marie Launay - , INRAE CSGA (Autor:in)
  • Elisabet Lewan - , Sveriges Lantbruksuniversitet (Autor:in)
  • Ke Liu - , University of Tasmania (Autor:in)
  • Fasil Mequanint - , Universität Hohenheim (Autor:in)
  • Marco Moriondo - , National Research Council of Italy (CNR) (Autor:in)
  • Claas Nendel - , Leibniz Centre for Agricultural Landscape Research, Czech Academy of Sciences, Universität Potsdam (Autor:in)
  • Gloria Padovan - , Università degli Studi di Firenze (Autor:in)
  • Budong Qian - , Agriculture and Agri-Food Canada (Autor:in)
  • Niels Schuetze - , Professur für Hydrologie (Autor:in)
  • Diana-Maria Seserman - , Leibniz Centre for Agricultural Landscape Research (Autor:in)
  • Vakhtang Shelia - , Florida State University (Autor:in)
  • Amir Souissi - , Agriculture and Agri-Food Canada (Autor:in)
  • Xenia Specka - , Leibniz Centre for Agricultural Landscape Research (Autor:in)
  • Amit Kumar Srivastava - , Universität Bonn (Autor:in)
  • Giacomo Trombi - , Università degli Studi di Firenze (Autor:in)
  • Tobias K. D. Weber - , Universität Hohenheim, Universität Kassel (Autor:in)
  • Lutz Weihermueller - , Helmholtz-Gemeinschaft Deutscher Forschungszentren (Autor:in)
  • Thomas Woehling - , Professur für Hydrologie, Lincoln Agritech Ltd. (Autor:in)
  • Sabine J. Seidel - , Universität Bonn (Autor:in)

Abstract

A major effect of environment on crops is through crop phenology, and therefore, the capacity to predict phenology for new environments is important. Mechanistic crop models are a major tool for such predictions, but calibration of crop phenology models is difficult and there is no consensus on the best approach. We propose an original, detailed approach for calibration of such models, which we refer to as a calibration protocol. The protocol covers all the steps in the calibration workflow, namely choice of default parameter values, choice of objective function, choice of parameters to estimate from the data, calculation of optimal parameter values, and diagnostics. The major innovation is in the choice of which parameters to estimate from the data, which combines expert knowledge and data-based model selection. First, almost additive parameters are identified and estimated. This should make bias (average difference between observed and simulated values) nearly zero. These are "obligatory" parameters, that will definitely be estimated. Then candidate parameters are identified, which are parameters likely to explain the remaining discrepancies between simulated and observed values. A candidate is only added to the list of parameters to estimate if it leads to a reduction in BIC (Bayesian Information Criterion), which is a model selection criterion. A second original aspect of the protocol is the specification of documentation for each stage of the protocol. The protocol was applied by 19 modeling teams to three data sets for wheat phenology. All teams first calibrated their model using their "usual" calibration approach, so it was possible to compare usual and protocol calibration. Evaluation of prediction error was based on data from sites and years not represented in the training data. Compared to usual calibration, calibration following the new protocol reduced the variability between modeling teams by 22% and reduced prediction error by 11%.

Details

OriginalspracheEnglisch
Aufsatznummer46
Seiten (von - bis)1-14
Seitenumfang14
FachzeitschriftAgronomy for Sustainable Development
Jahrgang2023
Ausgabenummer43
PublikationsstatusVeröffentlicht - 13 Juli 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85165277995
ORCID /0000-0003-2963-0965/work/155292011
ORCID /0000-0002-2376-528X/work/162347874

Schlagworte

Schlagwörter

  • Crop model, Model ensemble, Prediction error, Protocol, Variability