Prediction-Based Reachability Analysis for Collision Risk Assessment on Highways

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Xinwei Wang - , Technische Universität Delft (Autor:in)
  • Zirui Li - , Technische Universität Delft, Beijing Institute of Technology (Autor:in)
  • Javier Alonso-Mora - , Technische Universität Delft (Autor:in)
  • Meng Wang - , Professur für Verkehrsprozessautomatisierung, Technische Universität Delft, Technische Universität Dresden (Autor:in)

Abstract

Real-time safety systems are crucial components of intelligent vehicles. This paper introduces a prediction-based collision risk assessment approach on highways. Given a point mass vehicle dynamics system, a stochastic forward reachable set considering two-dimensional motion with vehicle state probability distributions is firstly established. We then develop an acceleration prediction model, which provides multi-modal probabilistic acceleration distributions to propagate vehicle states. The collision probability is calculated by summing up the probabilities of the states where two vehicles spatially overlap. Simulation results show that the prediction model has superior performance in terms of vehicle motion position errors, and the proposed collision detection approach is agile and effective to identify the collision in cut-in crash events.

Details

OriginalspracheEnglisch
Titel2022 IEEE Intelligent Vehicles Symposium, IV 2022
Herausgeber (Verlag)IEEE Xplore
Seiten504-510
Seitenumfang7
ISBN (elektronisch)9781665488211
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Intelligent Vehicles Symposium (IV)
ISSN1931-0587

Konferenz

Titel2022 IEEE Intelligent Vehicles Symposium
KurztitelIV 2022
Veranstaltungsnummer33
Dauer5 - 9 Juni 2022
OrtEurogress Aachen
StadtAachen
LandDeutschland

Externe IDs

ORCID /0000-0001-6555-5558/work/171064733

Schlagworte