Potentials and limitations in production and use of herringbone gearings for high-performance gearboxes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Martin Dix - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik, Technische Universität Chemnitz (Autor:in)
  • Welf-Guntram Drossel - , Technische Universität Dresden, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik, Technische Universität Chemnitz (Autor:in)
  • Berthold Schlecht - , Professur für Maschinenelemente (Autor:in)
  • Ruben Bauer - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Verena Kräusel - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Mike Lahl - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Carsten Ulrich - , Professur für Maschinenelemente (Autor:in)
  • Eric Hensel - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Joachim Regel - , Technische Universität Chemnitz (Autor:in)
  • Jonas Böttger - , Technische Universität Chemnitz (Autor:in)
  • Thomas Rosenlöcher - , Professur für Maschinenelemente (Autor:in)

Abstract

The development of modern gearing systems requires interdisciplinary and holistic approaches due to the complex correlations between manufacturing and gear properties in applications. To fully exploit the advantages of specific gearing designs, manufacturing processes need to complement each other. Herringbone gearings feature high potential for compact gearbox designs in various applications, e.g., epicyclic arrangements with relatively quiet running properties. Due to the elimination of transverse load and increased strength, gearbox dimensions can be reduced, and their design can be simplified. An advantageous application of herringbone gear design requires joint development of manufacturing process steps and consideration of their influence on operational behavior. The highest challenge lies in the complex and elaborate manufacturing of a real herringbone geometry without a gap in the middle between the left and right gear wheel sides. The present study shows that both gear rolling and power skiving processes show technical feasibility with high quality results and short processing times. Gear rolling leads to a gapless shape of the two sides, whereas power skiving produces a slight degradation in a particular intermediate area while the gear teeth stay interconnected. A calculation approach and a kinematic manufacturing simulation are employed to design the technological process parameters, tool geometry, and resulting gear wheel geometry. Furthermore, the properties of rolled gears’ peripheral zones are discussed, and FEM-assisted transmission errors of the skived gear wheel geometry are analyzed to describe the impact of specific manufacturing processes on gear wheel properties. The results of this work comprise a closed consideration from manufacturing to application properties of gear wheels by combining separate calculation and examination approaches. Future investigations will include a backward design from the operational requirements of the gearing system towards the choice of specific technological process parameters.

Details

OriginalspracheEnglisch
Seiten (von - bis)151-161
Seitenumfang11
FachzeitschriftCIRP Journal of Manufacturing Science and Technology
Jahrgang45
Ausgabenummer45
PublikationsstatusVeröffentlicht - Okt. 2023
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-0517-7425/work/138011172
Scopus 85164237178
WOS 001033323000001
Mendeley 3489c656-723f-33bd-9b28-fc0b10a4823f
ORCID /0000-0003-4000-0518/work/170586926

Schlagworte

Schlagwörter

  • Anisotropy, Finite element method (FEM), Gear rolling, Herringbone gear, Power skiving, Process chain, Simulation, Transmission error