Poincare meets Korn via Maxwell: Extending Korn's First Inequality to Incompatible Tensor Fields
Publikation: Vorabdruck/Dokumentation/Bericht › Vorabdruck (Preprint)
Beitragende
Abstract
For a bounded three-dimensional domain with Lipschitz boundary we extend Korn's first inequality to incompatible tensor fields. For compatible tensor fields our estimate reduces to a non-standard variant of the well known Korn's first inequality. On the other hand, for skew-symmetric tensor fields our new estimate turns to Poincare's inequality. Therefore, our result may be viewed as a natural common generalization of Korn's first and Poincare's inequality. Decisive tools for this unexpected estimate are the classical Korn's first inequality, Helmholtz decompositions for mixed boundary conditions and the Maxwell estimate.
Details
| Originalsprache | Englisch |
|---|---|
| Publikationsstatus | Veröffentlicht - 13 März 2012 |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper
Externe IDs
| ORCID | /0000-0003-4155-7297/work/145698478 |
|---|
Schlagworte
Schlagwörter
- math.AP