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Abstract

For a bounded domain Ω ⊂ R3 with Lipschitz boundary Γ and some relatively
open Lipschitz subset Γt 6= ∅ of Γ, we prove the existence of some c > 0, such that

c ||T ||L2(Ω,R3×3) ≤ ||symT ||L2(Ω,R3×3) + ||CurlT ||L2(Ω,R3×3) (0.1)

holds for all tensor fields in H(Curl; Ω), i.e., for all square-integrable tensor fields
T : Ω → R3×3 with square-integrable generalized rotation CurlT : Ω → R3×3,
having vanishing restricted tangential trace on Γt. If Γt = ∅, (0.1) still holds at

least for simply connected Ω and for all tensor fields T ∈ H(Curl; Ω) which are
L2(Ω)-perpendicular to so(3), i.e., to all skew-symmetric constant tensors. Here,
both operations, Curl and tangential trace, are to be understood row-wise.

For compatible tensor fields T = ∇v, (0.1) reduces to a non-standard variant of
the well known Korn’s first inequality in R3, namely

c ||∇v||L2(Ω,R3×3) ≤ ||sym∇v||L2(Ω,R3×3)

for all vector fields v ∈ H1(Ω,R3), for which ∇vn, n = 1, . . . , 3, are normal at Γt. On

the other hand, identifying vector fields v ∈ H1(Ω,R3) (having the proper boundary
conditions) with skew-symmetric tensor fields T , (0.1) turns to Poincaré’s inequality
since

√
2c ||v||L2(Ω,R3) = c ||T ||L2(Ω,R3×3) ≤ ||CurlT ||L2(Ω,R3×3) ≤ 2 ||∇v||L2(Ω,R3) .

Therefore, (0.1) may be viewed as a natural common generalization of Korn’s first
and Poincaré’s inequality. From another point of view, (0.1) states that one can
omit compatibility of the tensor field T at the expense of measuring the deviation
from compatibility through CurlT . Decisive tools for this unexpected estimate are
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the classical Korn’s first inequality, Helmholtz decompositions for mixed boundary
conditions and the Maxwell estimate.

Key Words Korn’s inequality, incompatible tensors, Maxwell’s equations, Helmholtz
decomposition, Poincaré type inequalities, Friedrichs-Gaffney inequality, mixed bound-
ary conditions, tangential traces
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1 Introduction

In this contribution we show that Korn’s first inequality can be generalized in some not
so obvious directions, namely to tensor fields which are not gradients. Our study is a
continuation from [82, 81, 84, 83] and here we generalize our results to weaker boundary
conditions and domains of more complicated topology. For the proof of our main inequal-
ity (0.1) we combine techniques from electro-magnetic and elasticity theory, namely

(HD) Helmholtz’ decomposition,
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(MI) the Maxwell inequality,

(KI) Korn’s inequality.

Since these three tools are crucial for our results we briefly look at their history. As pointed
out in the overview [110], Helmholtz founded a comprehensive development in the theory
of projections methods mostly applied in, e.g., electromagnetic or elastic theory or fluid
dynamics. His famous theorem HD, see Lemma 3, states, that any sufficiently smooth and
sufficiently fast decaying vector field can be characterized by its rotation and divergence
or can be decomposed into an irrotational and a solenoidal part. A first uniqueness result
was given by Blumenthal in [8]. Later, Hilbert and Banach space methods have been used
to prove similar and refined decompositions of the same type.

The use of inequalities is widespread in establishing existence and uniqueness of solu-
tions of partial differential equations. Furthermore, often these inequalities ensure that
the solution is in a more suitable space from a numerical view point than the solution
space itself. Let Ω ⊂ R3 be a bounded domain with Lipschitz continuous boundary Γ.
Moreover, let Γt,Γn be some relatively open Lipschitz subsets of Γ with Γt ∪ Γn = Γ and
Γt 6= ∅. In potential theory use is made of Poincaré’s inequality, this is

||u||L2(Ω) ≤ cp ||∇u||L2(Ω) (1.1)

for all functions u ∈
◦
H1(Γt; Ω)1 with some constant cp > 02, to bound the scalar potential

in terms of its gradient. In elasticity theory Korn’s first inequality in combination
with Poincaré’s inequality, this is

(c2
p + 1)−1/2 ||v||H1(Ω)

≤ ||∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) (1.2)

for all vector fields v ∈
◦
H1(Γt; Ω) with some constant ck > 0, is needed for bounding the

deformation of an elastic medium in terms of the symmetric strains, i.e., the symmetric
part sym∇v = 1

2
(∇v + (∇v)>) of the Jacobian ∇v. In electro-magnetic theory the

Maxwell inequality (see Lemma 1), this is

||v||L2(Ω) ≤ cm
(
||curl v||L2(Ω) + ||div v||L2(Ω)

)
(1.3)

for all v ∈
◦
H(curl; Γt,Ω)∩

◦
H(div; Γn,Ω)∩H(Ω)⊥ with some positive cm, is used to bound the

electric and magnetic field in terms of the electric charge and current density, respectively.
Actually, this important inequality is just the continuity estimate of the corresponding
electro-magneto static solution operator. It has different names in the literature, e.g.,
Friedrichs’, Gaffney’s or Poincaré type inequality [38, 32].

It is well known that Korn’s and Poincaré’s inequality are not equivalent. However,
one main result of our paper is that both inequalities, i.e., (1.1), (1.2), can be inferred
from the more general result (0.1), where (1.3) is used within the proof.

1For exact definitions see section 2.
2In the following cp, ck, cm > 0 refer to the constants in Poincaré’s, Korn’s and in the Maxwell inequal-

ities, respectively.
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1.1 The Maxwell inequality

Concerning the MI (Lemma 1) in 1968 Leis [66] considered the boundary value problem of
total reflection for the inhomogeneous and anisotropic Maxwell system as well in bounded
as in exterior domains. For bounded domains Ω ⊂ R3 he was able to estimate the
derivatives of vector fields v by the fields themselves, their divergence and their rotation
in L2(Ω), i.e.,

c

3∑
n=1

||∂n v||L2(Ω) ≤ ||v||L2(Ω) + ||curl v||L2(Ω) + ||div v||L2(Ω) , (1.4)

provided that the boundary Γ is sufficiently smooth and that ν × v|Γ = 03, i.e., the
tangential trace of v vanishes at Γ. Of course, (1.4) implies

c ||v||H1(Ω)
≤ ||v||L2(Ω) + ||curl v||L2(Ω) + ||div v||L2(Ω)

and thus by Rellich’s selection theorem the Maxwell compactness property (MCP),
i.e.,

X(Ω) :=
◦
H(curl; Ω) ∩ H(div; Ω)

= {v ∈ L2(Ω) : curl v ∈ L2(Ω), div v ∈ L2(Ω), ν × v|Γ = 0}

is compactly embedded into L2(Ω), since X(Ω) is a closed subspace of the Sobolev-Hilbert

space H1(Ω). However, (1.4), which is often called Friedrichs’ or Gaffney’s inequality, fails
if smoothness of ∂Ω is not assumed. On the other hand, by a standard indirect argument
the MCP implies the Maxwell inequality (1.3) for Γt = Γ. Hence, the compact embedding

X(Ω) ↪→ L2(Ω) (1.5)

is crucial for a solution theory suited for Maxwell’s equations as well as for the validity
of the Maxwell estimate (1.3) or Lemma 1. But in the non-smooth case compactness of
(1.5) can not be proved by Rellich’s selection theorem. On the other hand, if (1.5) is
compact, one obtains Fredholm’s alternative for time-harmonic/static Maxwell equations
and the Maxwell inequality for bounded domains. For unbounded domains, e.g., exterior
domains, (local) compactness implies Eidus’ limiting absorption and limiting amplitude
principles and the corresponding weighted Maxwell inequalities [26, 27, 28, 25]. These
are the right and crucial tools for treating radiation problems, see the papers by Pauly
[89, 90, 92, 91, 64] for the latest results. Therefore, Leis encouraged some of his students
to deal with electro-magnetic problems, in particular with the MCP-question, see [95, 96,
97, 98, 99, 100, 108, 118, 122].

In 1969 Rinkens [108] (see also [67]) presented an example of a non-smooth domain

where the embedding of X(Ω) into H1(Ω) is not possible. Another example had been
found shortly later and is written down in a paper by Saranen [109].

3ν denotes the outward unit normal at Γ and × respectively · the vector respectively scalar product
in R3.
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Henceforth, there was a search for proofs which do not make use of an embedding of
X(Ω) into H1(Ω). In 1974 Weck [118] obtained a first and quite general result for ‘cone-
like’ regions. Weck considered a generalization of Maxwell’s boundary value problem to
Riemannian manifolds of arbitrary dimension N , going back to Weyl [121]. The cone-
like regions have Lipschitz boundaries but maybe not the other way round. However,
polygonal boundaries are covered by Weck’s result. In a joint paper by Picard, Weck and
Witsch [100] Weck’s proof has been modified to obtain (1.5) even for domains which fail
to have Lipschitz boundary.

Other proofs of (1.5) for Lipschitz domains have been given by Costabel [20] and
Weber [116]. Costabel showed that X(Ω) is already embedded into the fractional Sobolev

space H1/2(Ω). Weber’s proof has been modified by Witsch [122] to obtain the result
for domains with Hölder continuous boundaries (with exponent p > 1/2). Finally, there
is a quite elegant result by Picard [97] who showed that if the result holds for smooth
boundaries it holds for Lipschitz boundaries as well. This result remains true even in the
generalized case (for Riemannian manifolds).

In this paper we shall make use of a result by Jochmann [52] who allows a Lipschitz
boundary Γ which is divided into two parts Γt and Γn by a Lipschitz curve and such that
on Γt and Γn the mixed boundary conditions ν × v|Γt = 0 and ν · v|Γn = 0 respectively,
hold. In his dissertation, Kuhn [63] has proved an analogous result for the generalized
Maxwell equations on Riemannian manifolds, following Weck’s approach.

The well known Sobolev type space H(curl; Ω) has plenty of important and prominent
applications, most of them in the comprehensive theory of Maxwell’s equations, i.e., in
electro-magnetic theory. Among others, we want to mention [66, 65, 67, 95, 96, 97, 98,
99, 118, 120, 122, 116, 117, 89, 90, 92, 91, 64, 93]. It is also used as a main tool for the
analysis and discretization of Navier-Stokes’ equations and in the numerical analysis of
non-conforming finite element discretizations [43, 41].

1.2 Korn’s inequality

Korn’s inequality gives the control of the L2(Ω)-norm of the gradient of a vector field by
the L2(Ω)-norm of just the symmetric part of its gradient, under certain conditions. The
most elementary variant of Korn’s inequality for Γt = Γ reads as follows: For any smooth

vector field v : Ω→ R3 with compact support in Ω, i.e., v ∈
◦
C∞(Ω),

||∇v||2L2(Ω) ≤ 2 ||sym∇v||2L2(Ω) (1.6)

holds. This inequality is simply obtained by straight forward partial integration, see the
Appendix, and dates back to Korn himself [61]. Moreover, it can be improved easily by
estimating just the deviatoric part of the symmetric gradient (see Appendix), this is

∀ v ∈
◦
H1(Ω)

1

2
||∇v||2L2(Ω) ≤ ||dev sym∇v||2L2(Ω) ≤ ||sym∇v||2L2(Ω) . (1.7)

Here, we introduce the deviatoric part dev T := T − 1
3

trT id as well as the symmetric and
skew-symmetric parts symT := 1

2
(T + T>), skew T := 1

2
(T − T>) for quadratic matrix
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or tensor fields T . Note that T = symT + skew T = dev T + 1
3

trT id and symT , skew T
and dev T , trT id are orthogonal in R3×3. Together with (component-wise) Poincaré’s

inequality (1.1) for Γt = Γ, see [102], one arrives as in (1.2) for all v ∈
◦
H1(Ω) at

(c2
p + 1)−1/2 ||v||H1(Ω)

≤ ||∇v||L2(Ω) ≤
√

2 ||dev sym∇v||L2(Ω) ≤
√

2 ||sym∇v||L2(Ω) .

Then, Rellich’s selection theorem shows that the set of all
◦
H1(Ω)-vector fields whose

(deviatoric) symmetric gradients are bounded in L2(Ω) is (sequentially) compact in L2(Ω).
Let us mention that Arthur Korn (1870-1945) was a student of Henri Poincaré. Korn

visited him in Paris before the turn of the 20th century and it was again Korn who wrote
the obituary for Poincaré in 1912 [62]. It is also worth mentioning that Poincaré helped
to introduce Maxwell’s electro-magnetic theory to french readers. The interesting life of
the german-jewish mathematician, physicist and inventor of telegraphy Korn is recalled
in [70, 101].

In general, Korn’s inequality involves an integral measure of shape deformation, i.e.,
a measure of strain ||sym∇v||, with which it is possible to control the distance of the

deformation to some Euclidean motion or to control the H1(Ω)-norm or semi-norm.

Consider the kernel of the linear operator sym∇ : H1(Ω) ⊂ L2(Ω)→ L2(Ω)

ker(sym∇) = RM := {x 7→ Ax+ b : A ∈ so(3), b ∈ R3}, (1.8)

the space of all infinitesimal rigid displacements (motions) which consists of all affine
linear transformations v for which ∇v = A ∈ so(3), i.e., A is skew-symmetric4. Since
the measure of strain sym∇v is invariant with respect to superposed infinitesimal rigid
displacements, i.e., RM ⊂ ker(sym∇), one needs some linear boundary or normaliza-
tion conditions in order to fix this Euclidean motion. E.g., using homogeneous Dirichlet
boundary conditions one has (1.2). By normalization one gets

||∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) (1.9)

for all v ∈ H1(Ω) with ∇v⊥ so(3)5. Equivalently, one has for all v ∈ H1(Ω), e.g.,

||∇v − A∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) , (1.10)

where the constant skew-symmetric tensor

A∇v := skew

∮
Ω

∇v dλ ∈ so(3),

∮
Ω

u dλ := λ(Ω)−1

∫
Ω

u dλ (λ: Lebesgue’s measure),

4(1.8) easily follows from the simple observation that sym∇v = 0 implies ∇v(x) = A(x) ∈ so(3).
Taking the Curl on both sides gives CurlA = 0 and thus ∇A = 0. Hence, A must be a constant
skew-symmetric matrix. Equivalently, one may use the well known representation for second derivatives
∂i ∂j vk = ∂j(sym∇v)ik + ∂i(sym∇v)jk − ∂k(sym∇v)ij . Then, sym∇v = 0 implies that v is a first
order polynomial. This representation formula for second derivatives of v in terms of derivatives of strain
components can also serve as basis for a proof of Korn’s second inequality [17, 24]. In this case one

uses the lemma of Lions, see [16], i.e., for a Lipschitz domain u ∈ L2(Ω) if and only if u ∈ H−1(Ω) and

∇u ∈ H−1(Ω).
5⊥ denotes orthogonality in L2(Ω), whose elements map into R, R3 or R3×3, respectively.
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is the L2(Ω)-orthogonal projection of ∇v onto so(3). For details we refer to the appendix.
Poincaré’s inequalities for vector fields by normalization read

||v||L2(Ω) ≤ cp ||∇v||L2(Ω) , ||v||H1(Ω)
≤ (1 + c2

p)
1/2 ||∇v||L2(Ω) (1.11)

for all v ∈ H1(Ω) with v⊥R3. Equivalently, one has for all v ∈ H1(Ω), e.g.,

||v − av||L2(Ω) ≤ cp ||∇v||L2(Ω) , ||v − av||H1(Ω)
≤ (1 + c2

p)
1/2 ||∇v||L2(Ω) , (1.12)

where the constant vector

av :=

∮
Ω

v dλ ∈ R3

is the L2(Ω)-orthogonal projection of v onto R3. Combining (1.9) and (1.11) we obtain

(1 + c2
p)
−1/2 ||v||H1(Ω)

≤ ||∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) (1.13)

for all v ∈ H1(Ω) with ∇v⊥ so(3) and v⊥R3. Without these conditions one has

(1 + c2
p)
−1/2 ||v − rv||H1(Ω)

≤ ||∇v − A∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) , (1.14)

for all v ∈ H1(Ω), where the rigid motion rv := A∇vξ+av−A∇vaξ ∈ RM with the identity
function ξ(x) := id(x) = x reads

rv(x) := A∇vx+

∮
Ω

v dλ− A∇v
∮

Ω

x dλx.

Note that u := v− rv belongs to H1(Ω) with ∇u = ∇v−A∇v and satisfies ∇u⊥ so(3) and

u⊥R3. Hence (1.13) holds for u. Moreover, we have for v ∈ H1(Ω)

rv = 0 ⇔ A∇v = 0 ∧ av = 0 ⇔ ∇v⊥ so(3) ∧ v⊥R3.

See the appendix for details. Conditions to eliminate some or all six rigid body modes
(three infinitesimal rotations and three translations) comprise (see [3])

skew

∫
Ω

∇v dλ = 0, v|Γt = 0, ∇vn normal to Γt.

Korn’s inequality is the main tool in showing existence, uniqueness and continuous
dependence upon data in linearized elasticity theory and it has therefore plenty of ap-
plications in continuum mechanics [87, 47]. One refers usually to [59, 60, 61] for first
versions of Korn’s inequalities. These original papers by Korn are, however, difficult to
read nowadays and Friedrichs even claims that they are wrong [31]. In any case, in [61,
p.710(13)] Korn states that (in modern notation)

||skew∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω)
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holds for all vector fields v : Ω ⊂ R3 → R3 having Hölder continuous first order derivatives
and which satisfy ∫

Ω

v dλ = 0,

∫
Ω

skew∇v dλ = 0.

Note that this implies A∇v = 0 and av = 0 and hence rv = 0.
Let Γt 6= ∅. By the classical Korn’s first inequality with homogeneous Dirichlet

boundary condition we mean

∃ ck > 0 ∀ v ∈
◦
H1(Γt; Ω) ||∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω)

or equivalently by Poincaré’s inequality (1.1)

∃ ck > 0 ∀ v ∈
◦
H1(Γt; Ω) ||v||H1(Ω)

≤ ck ||sym∇v||L2(Ω) ,

see (1.2), whereas we say that the classical Korn’s second inequality holds if

∃ ck > 0 ∀ v ∈ H1(Ω) ||v||H1(Ω)
≤ ck

(
||v||L2(Ω) + ||sym∇v||L2(Ω)

)
.

Korn’s first inequality can be obtained as a consequence of Korn’s second inequality6

and the compactness of the embedding H1(Ω) ↪→ L2(Ω), i.e., Rellich’s selection theorem for

H1(Ω). Thus, the main task for Korn’s inequalities is to show Korn’s second inequality.
Korn’s second inequality in turn can be seen as a strengthened version of G̊arding’s
inequality requiring methods from Fourier analysis [44, 45, 53]. Very elegant and short
proofs of Korn’s second inequality have been presented in [58, 113] and by Fichera [29].
Fichera’s proof can be found in the appendix of Leis’ book [67]. Another short proof is
based on strain preserving extension operators [86].

Both inequalities admit a natural extension to the Sobolev space W1,p(Ω) for Sobolev
exponents 1 < p < ∞. The first proofs have been given by Mosolov and Mjasnikov in
[72, 73] and by Ting in [114]. Note that Korn’s inequalities are wrong7 in W1,1(Ω), see

[88]. New and simple counterexamples for W1,1(Ω) have been obtained in [19]. Friedrichs
furnished the first8 modern proof of the above inequalities [31], see also [94, 42, 31, 44,
45, 6, 86, 58, 17, 5, 46, 48, 24]. A version of Korn’s inequality for sequences of gradient
young measures has been obtained in [7].

Korn’s inequalities are also crucial in the finite element treatment of problems in solid
mechanics with non-conforming or discontinuous Galerkin methods. Piecewise Korn’s
inequalities subordinate to the mesh and involving jumps across element boundaries are

6The ascription Korn’s first or second inequality is not universal. Friedrichs [31] refers to Korn’s
inequality ||∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) in the first case if u|Γ = 0 and to the second case if skew

∫
Ω
∇v dλ

vanishes. We follow the usage in [115, p.54].
7Korn’s inequalities are also wrong in W1,∞(Ω). E.g., consider the unit ball in R2 and the vector field

v(x) := ln |x|(x2,−x1).
8The case N = 2 has already been proved by Friedrichs [30] in 1937.
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investigated, e.g., in [10, 68]. An interesting special case of Korn’s first inequality with
non-standard boundary conditions and for non-axi-symmetric domains with applications
in statistical mechanics has been treated in [22].

Ciarlet [16, 15, 18] has shown how to extend Korn’s inequalities to curvilinear coordi-
nates in Euclidean space which has applications in shell theory. It is possible to extend
such generalizations to more general Riemannian manifolds [13]. Korn’s inequalities for
thin domains with uniform constants have been investigated, e.g., in [69].

Korn’s inequalities appear in the treatment of the Navier-Stokes model as well, since
with the fluid velocity v in the Eulerian description the rate of the deformation tensor is
given by sym∇v which controls the viscous forces generated due to shearing motion. In
this case, Korn’s inequality acts in a geometrically exact description of the fluid motion
and not just for the approximated linearized treatment as in linearized elasticity.

1.3 Further generalizations of Korn’s inequalities

1.3.1 Poincaré-Korn type estimates

As already mentioned, it is well known that there are no W1,1(Ω)-versions of Korn’s
inequalities [88, 19]. However, it is still possible to obtain a bound of the Lp(Ω)-norm of
a vector field v even for p = 1 in terms of controlling the strain sym∇v in some sense9.
More precisely, let as usual BD(Ω) denote the space of bounded deformations, i.e., the
space of all vector fields v ∈ L1(Ω) such that all components of the tensor (matrix) sym∇v
(defined in the distributional sense) are measures with finite total variation. Then, the
total variation measure of the distribution sym∇v for a vector field v ∈ L1(Ω) is defined
by

| sym∇v|(Ω) := sup

Φ∈
◦
C1(Ω)

||Φ||L∞(Ω)≤1

| 〈v,Div sym Φ〉Ω |

and | sym∇v|(Ω) = ||sym∇v||L1(Ω) holds if sym∇v ∈ L1(Ω). In [55, 56] the inequalities

∃ ck > 0 ∀ v ∈ BD(Ω) inf
r∈RM

||v − r||L1(Ω) ≤ ck| sym∇v|(Ω),

∃ ck > 0 ∀ v ∈ Lp(Ω), sym∇v ∈ Lq(Ω) inf
r∈RM

||v − r||Lp(Ω) ≤ ck ||sym∇v||Lq(Ω)

with

q ∈ [1,∞) \ {3}, p =

{
3q

3−q , 1 ≤ q < 3

∞ , q > 3

have been proved. In case the displacement v has vanishing trace on Γ one has a Poincaré-
Korn type inequality for v ∈ BD(Ω) [112]

||v||L3/2(Ω) ≤ ck| sym∇v|(Ω).

9And this is indeed the type of inequality a la Poincaré’s estimate that Korn intended to prove [61,
p.707].
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The weaker inequality with L1(Ω)-term on the right hand side is already proved in [111,
Th.1]. Moreover, as shown in [112, Th.II.2.4] it is clear that BD(Ω) is compactly embedded
into Lp(Ω) for any 1 ≤ p < 3/2.

Considering Korn’s second inequality one obtains, again via Rellich’s selection theo-
rem, the compact embedding of

S(Ω) := {v ∈ L2(Ω) : sym∇v ∈ L2(Ω)}

into L2(Ω) provided that the ‘regularity result’ S(Ω) ⊂ H1(Ω) holds, as already mentioned.
In less regular domains, e.g., domains with cusps, Korn’s second inequality and the em-
bedding S(Ω) ⊂ H1(Ω) may fail, for counterexamples see [119, 40]. Weck [119] has shown
that, however, compact embedding into L2(Ω), i.e., the elastic compactness property
(ECP)10, this is, the embedding

S(Ω) ↪→ L2(Ω) (1.15)

is compact, still holds true, without the intermediate H1(Ω)-estimate. Therefore, once
more by a usual indirect argument, also in irregular (bounded) domains one has always
the estimate

||v||L2(Ω) ≤ ck ||sym∇v||L2(Ω)

for all v ∈ S(Ω) ∩ S0(Ω)⊥, where S0(Ω) := {v ∈ S(Ω) : sym∇v = 0}. Note that
S0(Ω) is finite dimensional11 due to the compact embedding (1.15). Moreover, we have
RM ⊂ S0(Ω) but equality is not clear.

Extensions of Korn’s inequalities to non-smooth domains and weighted versions for
unbounded domains can be found in [57, 74, 49, 23, 1, 2]. Korn’s inequalities in Orlicz
spaces are treated, e.g., in [35, 9]. A reference for Korn’s inequality for perforated domains
and homogenization theory is [11].

1.3.2 Generalization to weaker strain measures

Also the second Korn’s inequality can be generalized by using the trace free infinitesimal
deviatoric strain measure. It holds

||v||H1(Ω)
≤ ck

(
||v||L2(Ω) + ||dev sym∇v||L2(Ω)

)
for all v ∈ H1(Ω). For proofs see [21, 51, 106, 107] and [35, 34, 36]. This version has found
applications for Cosserat models and perfect plasticity [37].

Another generalization concerns the situation, where a dislocation based motivated
generalized strain sym(∇vF−1

p ) is controlled. Such cases arise naturally when consider-
ing finite elasto-plasticity based on the multiplicative decomposition F = FeFp of the
deformation gradient into elastic and plastic parts [77, 76] or in elasticity problems with

10Here, we have the same situation as in the Maxwell case, see the MCP and the MI.
11Compare with H(Ω) in (2.2).
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structural changes [54, 78] and shell models [79]. In case of plasticity, Fp : Ω→ R3×3 is the
plastic deformation related to pure dislocation motion. The first result under the assump-
tions that detFp ≥ µ > 0 and Fp is sufficiently smooth, i.e., Fp, F

−1
p ,CurlFp ∈ C1(Ω), has

been given by Neff in [75]. In fact

||v||H1(Ω)
≤ ck

∣∣∣∣sym(∇vF−1
p )
∣∣∣∣
L2(Ω)

(1.16)

holds for all v ∈
◦
H1(Γt; Ω) with ck depending on Fp. This inequality has been generalized

to mere continuity and invertibility of Fp in [103], while it is also known that some sort
of smoothness of Fp beyond L∞(Ω)-control is necessary, see [103, 104, 85].

1.3.3 Korn’s inequality and rigidity estimates

Recently, there has been a revived interest in so called rigidity results, which have a close
connection to Korn’s inequalities. With the point-wise representation

dist2(∇v(x), so(3)) = inf
A∈so(3)

|∇v(x)− A|2

= inf
A∈so(3)

(
| sym∇v(x)|2 + | skew∇v(x)− A|2

)
= | sym∇v(x)|2,

the infinitesimal rigidity result can be expressed as follows

dist(∇v, so(3)) = 0 ⇒ v ∈ RM. (1.17)

Korn’s first inequality can be seen as a qualitative extension of the infinitesimal rigidity
result, this is, for 1 < p <∞ there exist constants ck > 0 such that

min
A∈so(3)

||∇v − A||Lp(Ω) ≤ ck ||sym∇v||Lp(Ω) = ck
( ∫

Ω

distp(∇v, so(3)) dλ
)1/p

holds for all v ∈ W1,p(Ω), see, e.g., [115]. As already seen in (1.10), in the Hilbert space
case p = 2 the latter inequality can be made explicit with A = A∇v and in this form
with A∇v = 0 it is given by Friedrichs [31, p.446] and denoted as Korn’s inequality in the
second case.

The nonlinear version of (1.17) is the classical Liouville rigidity result, see [14, 105,
107]. It states that if an elastic body is deformed in such a way that its deformation
gradient is point-wise a rotation, then the body is indeed subject to a rigid motion. In
mathematical terms we have for smooth maps ϕ, that if ∇ϕ ∈ SO(3)12 almost everywhere
then ∇ϕ is constant, i.e.,

dist(∇ϕ, SO(3)) = 0 ⇒ ϕ(x) = Rx+ b, R ∈ SO(3), b ∈ R3. (1.18)

12SO(3) denotes the space of orthogonal matrices with determinant 1.
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The optimal quantitative version of Liouville’s rigidity result has been derived by Friesecke,
James and Müller in [33]. We have

min
R∈SO(3)

( ∫
Ω

distp(∇ϕ,R) dλ
)1/p ≤ ck

( ∫
Ω

distp(∇ϕ, SO(3)) dλ
)1/p

. (1.19)

As a consequence, if the deformation gradient is close to rotations, then it is in fact close
to a unique rotation. A generalization to fracturing materials is stated in [12]. It is
possible to infer a nonlinear Korn’s inequality from (1.19), i.e.,

||∇ϕ− id||L2(Ω) ≤ ck

∣∣∣∣∣∣(∇ϕ)>∇ϕ− id
∣∣∣∣∣∣
L2(Ω)

for all ϕ ∈ W1,4(Ω) with ϕ = id on Γ and det∇ϕ > 0, see [71] for more general statements.
Another quantitative generalization of Liouville’s rigidity result is the following: For all
differentiable orthogonal tensor fields R : Ω→ SO(3)

|∇R| ≤ c |CurlR| (1.20)

holds point-wise [80]. From (1.20) we may also recover (1.18) by assuming R = ∇ϕ. It
extends the simple inequality for differentiable skew-symmetric tensor fields A : Ω→ so(3)

|∇A| ≤ c |CurlA| (1.21)

to SO(3), i.e., to finite rotations [80].
After this introductory remarks we turn to the main part of our contribution.

2 Definitions and preliminaries

Let Ω be a bounded domain in R3 with Lipschitz boundary Γ := ∂Ω. Moreover, let Γt
be a relatively open subset of Γ separated from Γn := ∂Ω \ Γt by a Lipschitz curve. For
details and exact definitions see [52].

2.1 Functions and vector fields

The usual Lebesgue spaces of square integrable functions, vector or tensor fields on Ω with
values in R, R3 or R3×3, respectively, will be denoted by L2(Ω). Moreover, we introduce
the standard Sobolev spaces

H(grad; Ω) = {u ∈ L2(Ω) : gradu ∈ L2(Ω)}, grad = ∇,
H(curl; Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)}, curl = ∇×,
H(div; Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)}, div = ∇·
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of functions u or vector fields v, respectively. H(grad; Ω) is usually denoted by H1(Ω).
Furthermore, we introduce their closed subspaces

◦
H(grad; Γt,Ω) =

◦
H1(Γt; Ω),

◦
H(curl; Γt,Ω),

◦
H(div; Γn,Ω)

as completion under the respective graph norms of the scalar valued space
◦
C∞(Γt,Ω) and

the vector valued spaces
◦
C∞(Γt,Ω),

◦
C∞(Γn,Ω), where

◦
C∞(γ; Ω) := {u ∈ C∞(Ω) : dist(suppu, γ) > 0}, γ ∈ {Γ,Γt,Γn}.

In the latter Sobolev spaces, by Gauß’ theorem the usual homogeneous scalar, tangential
and normal boundary conditions

u|Γt = 0, ν × v|Γt = 0, ν · v|Γn = 0

are generalized, where ν denotes the outward unit normal at Γ.13 If Γt = Γ (and Γn = ∅)
resp. Γt = ∅ (and Γn = Γ) we obtain the usual Sobolev-type spaces and write

◦
H(grad; Ω) =

◦
H1(Ω),

◦
H(curl; Ω), H(div; Ω)

resp.

H(grad; Ω) = H1(Ω), H(curl; Ω),
◦
H(div; Ω).

Furthermore, we need the spaces of irrotational or solenoidal vector fields

H(curl0; Ω) := {v ∈ H(curl; Ω) : curl v = 0},
H(div0; Ω) := {v ∈ H(div; Ω) : div v = 0},

◦
H(curl0; Γt,Ω) := {v ∈

◦
H(curl; Γt,Ω) : curl v = 0},

◦
H(div0; Γn,Ω) := {v ∈

◦
H(div; Γn,Ω) : div v = 0},

where the index 0 indicates vanishing curl or div, respectively. All these spaces are

Hilbert spaces. In classical terms, e.g., a vector field v belongs to
◦
H(curl0; Γt,Ω) resp.

◦
H(div0; Γn,Ω), if

curl v = 0, ν × v|Γt = 0 resp. div v = 0, ν · v|Γn = 0.

In [52] the crucial compact embedding

◦
H(curl; Γt,Ω) ∩

◦
H(div; Γn,Ω) ↪→ L2(Ω) (2.1)

13Note that ν × v|Γt
= 0 is equivalent to τ · v|Γt

= 0 for all tangential vector fields τ at Γt.
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has been proved, which we refer to as Maxwell compactness property (MCP). The gener-
alization to RN or even to Riemannian manifolds using the calculus of differential forms
can be found in [63] or [50].

A first immediate consequence of (2.1) is that the space of so called ‘harmonic Dirichlet-
Neumann fields’

H(Ω) :=
◦
H(curl0; Γt,Ω) ∩

◦
H(div0; Γn,Ω) (2.2)

is finite dimensional, since by (2.1) the unit ball is compact in H(Ω). In fact, if Γt = ∅
resp. Γt = Γ, its dimension equals the first resp. second Betti number of Ω, see [96]. In
classical terms we have v ∈ H(Ω) if

curl v = 0, div v = 0, ν × v|Γt = 0, ν · v|Γn = 0.

By an usual indirect argument we achieve another immediate and important conse-
quence:

Lemma 1 (Maxwell Estimate for Vector Fields) There exists a positive constant cm, such

that for all v ∈
◦
H(curl; Γt,Ω) ∩

◦
H(div; Γn,Ω) ∩H(Ω)⊥

||v||L2(Ω) ≤ cm
(
||curl v||2L2(Ω) + ||div v||2L2(Ω)

)1/2
.

There are two options to get estimate on
◦
H(curl; Γt,Ω) ∩

◦
H(div; Γn,Ω).

Corollary 2 (Maxwell Estimate for Vector Fields) There exists a positive constant cm, such

that for all v ∈
◦
H(curl; Γt,Ω) ∩

◦
H(div; Γn,Ω)

||(id−π)v||L2(Ω) ≤ cm
(
||curl v||2L2(Ω) + ||div v||2L2(Ω)

)1/2
,

||v||L2(Ω) ≤ cm
(
||curl v||2L2(Ω) + ||div v||2L2(Ω) + ||πv||2L2(Ω)

)1/2
.

Here π : L2(Ω)→ H(Ω) denotes the L2(Ω)-orthogonal projection onto Dirichlet-Neumann
fields and can be expressed explicitly by

πv :=
L∑
`=1

〈
v, d`

〉
L2(Ω)

d`, ||πv||2L2(Ω) =
L∑
`=1

|
〈
v, d`

〉
L2(Ω)

|2,

where L := dimH(Ω) and (d`)L`=1 an L2(Ω)-orthonormal basis of H(Ω).

Here, we denote by ⊥ the orthogonal complement in L2(Ω). As shown in [52] as well
we have

grad
◦
H(grad; Γt,Ω)⊥ =

◦
H(div0; Γn,Ω), curl

◦
H(curl; Γn,Ω)⊥ =

◦
H(curl0; Γt,Ω),
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which implies

grad
◦
H(grad; Γt,Ω) =

◦
H(div0; Γn,Ω)⊥, curl

◦
H(curl; Γn,Ω) =

◦
H(curl0; Γt,Ω)⊥,

where the closures are taken in L2(Ω). Since

grad
◦
H(grad; Γt,Ω) ⊂

◦
H(curl0; Γt,Ω), curl

◦
H(curl; Γn,Ω) ⊂

◦
H(div0; Γn,Ω)

we obtain by the projection theorem the Helmholtz decompositions

L2(Ω) = grad
◦
H(grad; Γt,Ω)⊕

◦
H(div0; Γn,Ω)

=
◦
H(curl0; Γt,Ω)⊕ curl

◦
H(curl; Γn,Ω)

= grad
◦
H(grad; Γt,Ω)⊕H(Ω)⊕ curl

◦
H(curl; Γn,Ω),

where ⊕ denotes the L2(Ω)-orthogonal sum. Using an indirect argument, the space

grad
◦
H(grad; Γt,Ω) is already closed by variants of Poincaré’s estimate, i.e.,

Γt 6= ∅ : ∃ cp > 0 ∀u ∈
◦
H(grad; Γt,Ω) ||u||L2(Ω) ≤ cp ||gradu||L2(Ω) , (2.3)

Γt = ∅ : ∃ cp > 0 ∀u ∈ H(grad; Ω) ∩ {1}⊥ ||u||L2(Ω) ≤ cp ||gradu||L2(Ω) ,

which are implied by the compact embeddings (Rellich’s selection theorems)

◦
H(grad; Γt,Ω) ↪→ L2(Ω), H(grad; Ω) ↪→ L2(Ω). (2.4)

Analogously to Corollary 2 we also have for Γt = ∅ and all u ∈ H(grad; Ω)

||u− αu||L2(Ω) ≤ cp ||gradu||L2(Ω) , αu := λ(Ω)−1 〈u, 1〉L2(Ω) =

∮
Ω

u dλ ∈ R,

||u||L2(Ω) ≤ cp(||gradu||2L2(Ω) + ||αu||2L2(Ω))
1/2.

Interchanging Γt and Γn in the second equation of the latter Helmholtz decompositions

and applying this Helmholtz decompositions to
◦
H(curl; Γn,Ω) yields the refinement

curl
◦
H(curl; Γn,Ω) = curl

( ◦
H(curl; Γn,Ω) ∩ curl

◦
H(curl; Γt,Ω)

)
.

Now, by Lemma 1 we see that curl
◦
H(curl; Γn,Ω) is closed as well. We have:
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Lemma 3 (Helmholtz Decompositions for Vector Fields) The orthogonal decompositions

L2(Ω) = grad
◦
H(grad; Γt,Ω)⊕

◦
H(div0; Γn,Ω)

=
◦
H(curl0; Γt,Ω)⊕ curl

◦
H(curl; Γn,Ω)

= grad
◦
H(grad; Γt,Ω)⊕H(Ω)⊕ curl

◦
H(curl; Γn,Ω)

hold. Moreover,

curl
◦
H(curl; Γn,Ω) = curl

( ◦
H(curl; Γn,Ω) ∩ curl

◦
H(curl; Γt,Ω)

)
.

2.2 Tensor fields

We extend our calculus to (3× 3)-tensor (matrix) fields. For vector fields v with compo-

nents in H(grad; Ω) and tensor fields T with rows in H(curl; Ω) resp. H(div; Ω), i.e.,

v =

v1

v2

v3

 , vn ∈ H(grad; Ω), T =

T1
>

T2
>

T3
>

 , Tn ∈ H(curl; Ω) resp. H(div; Ω)

we define

Grad v :=

grad>v1

grad>v2

grad>v3

 = Jv, CurlT :=

curl>T1

curl>T2

curl>T3

 , Div T :=

div T1

div T2

div T3

 ,
where Jv denotes the Jacobian of v and > the transpose. We note that v and Div T are
vector fields, whereas T , CurlT and Grad v are tensor fields. The corresponding Sobolev
spaces will be denoted by

H(Grad; Ω), H(Curl; Ω), H(Curl0; Ω), H(Div; Ω), H(Div0; Ω)

and

◦
H(Grad; Γt,Ω),

◦
H(Curl; Γt,Ω),

◦
H(Curl0; Γt,Ω),

◦
H(Div; Γn,Ω),

◦
H(Div0; Γn,Ω).

Now, we present our three crucial tools to prove our main estimate. First we have
obvious consequences from Lemmas 1 and 3:

Corollary 4 (Maxwell Estimate for Tensor Fields) The estimate

||T ||L2(Ω) ≤ cm
(
||CurlT ||2L2(Ω) + ||Div T ||2L2(Ω)

)1/2

holds for all tensor fields T ∈
◦
H(Curl; Γt,Ω) ∩

◦
H(Div; Γn,Ω) ∩ (H(Ω)3)⊥. Furthermore,

the analogue of Corollary 2 holds as well.
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Here, T ∈ H(Ω)3 if T> = [T1 T2 T3] with Tm ∈ H(Ω) for m = 1, . . . , 3.

Corollary 5 (Helmholtz Decomposition for Tensor Fields) The orthogonal decompositions

L2(Ω) = Grad
◦
H(Grad; Γt,Ω)⊕

◦
H(Div0; Γn,Ω)

=
◦
H(Curl0; Γt,Ω)⊕ Curl

◦
H(Curl; Γn,Ω)

= Grad
◦
H(Grad; Γt,Ω)⊕H(Ω)3 ⊕ Curl

◦
H(Curl; Γn,Ω)

hold. Moreover,

Curl
◦
H(Curl; Γn,Ω) = Curl

( ◦
H(Curl; Γn,Ω) ∩ Curl

◦
H(Curl; Γt,Ω)

)
.

The third important tool is Korn’s first inequality and a variant which meets our needs
is the next lemma.

Lemma 6 (Korn’s First Inequality: Standard Version) There exists a constant ck,s > 0,
such that the following holds:

(i) If Γt 6= ∅ then

(1 + c2
p)
−1/2 ||v||H1(Ω)

≤ ||Grad v||L2(Ω) ≤ ck,s ||sym Grad v||L2(Ω) (2.5)

holds for all vector fields v ∈
◦
H(Grad; Γt,Ω).

(ii) If Γt = ∅, then the inequalities (2.5) hold for all vector fields v ∈ H(Grad; Ω) with
Grad v⊥ so(3) and v⊥R3. Moreover, the second inequality of (2.5) holds for all

vector fields v ∈ H(Grad; Ω) with Grad v⊥ so(3). For all v ∈ H(Grad; Ω)

(1 + c2
p)
−1/2 ||v − rv||H1(Ω)

≤ ||Grad v − AGrad v||L2(Ω) ≤ ck,s ||sym Grad v||L2(Ω) (2.6)

holds, where rv ∈ RM and AGrad v = Grad rv are given by rv(x) := AGrad vx+ bv and

AGrad v := skew

∮
Ω

Grad v dλ ∈ so(3), bv :=

∮
Ω

v dλ− AGrad v

∮
Ω

x dλx ∈ R3.

We note v − rv⊥R3 and Grad(v − rv) = Grad v − AGrad v⊥ so(3).

Proof As already mentioned in the introduction, the assertions are easy consequences
of Korn’s second inequality and Rellich’s selection theorem for H1(Ω). �
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Remark 7 Note that AGrad v = πso(3) Grad v, where πso(3) : L2(Ω) → so(3) denotes the
L2(Ω)-orthogonal projection onto so(3). Thus, the assertion

Grad(v − rv) = Grad v − AGrad v = (id−πso(3)) Grad v⊥ so(3)

is trivial. Moreover, generally for T ∈ L2(Ω)

πso(3)T := AT := skew

∮
Ω

T dλ ∈ so(3) (2.7)

holds. Equivalent to (2.6) we have for all v ∈ H(Grad; Ω)

(1 + c2
p)
−1/2 ||v||H1(Ω)

≤
(
||∇v||2L2(Ω) + ||av||2L2(Ω)

)1/2

≤ ck
(
||sym∇v||2L2(Ω) + ||AGrad v||2L2(Ω) + ||av||2L2(Ω)

)1/2

≤ ck
(
||sym∇v||2L2(Ω) + ||rv||2H1(Ω)

)1/2

with

av = πR3v :=

∮
Ω

v dλ ∈ R3,

where πR3 : L2(Ω)→ R3 denotes the L2(Ω)-orthogonal projection onto R3. For details, we
refer to the appendix.

3 Main results

We start with generalizing Korn’s first inequality from gradient tensor fields to merely
irrotational tensor fields.

3.1 Extending Korn’s first inequality to irrotational tensor fields

Lemma 8 Let Γt 6= ∅ and u ∈ H(grad; Ω) with gradu ∈
◦
H(curl0; Γt,Ω). Then, u is

constant on any connected component of Γt.

Proof It is sufficient to show that u is locally constant. Let x ∈ Γt and B2r := B2r(x)
be an open ball of radius 2r > 0 around x such that B2r is covered by a Lipschitz-chart

domain and Γ ∩ B2r ⊂ Γt. Moreover, we pick some ϕ ∈
◦
C∞(B2r) with ϕ|Br = 1. Then

ϕ gradu ∈
◦
H(curl; Ω ∩ B2r). Thus, the extension by zero v of ϕ gradu to B2r belongs

to H(curl;B2r). Hence, v|Br ∈ H(curl0;Br). Since Br is simply connected, there exists a

ũ ∈ H(grad;Br) with grad ũ = v in Br. In Br \ Ω we have v = 0. Therefore, ũ|Br\Ω = c̃
with some c̃ ∈ R. Moreover, gradu = v = grad ũ holds in Br ∩ Ω, which yields u = ũ+ c
in Br ∩ Ω with some c ∈ R. Finally, u|Br∩Γt = c̃+ c is constant. �
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Lemma 9 (Korn’s First Inequality: Tangential Version) Let Γt 6= ∅. There exists a constant
ck,t ≥ ck,s, such that

||Grad v||L2(Ω) ≤ ck,t ||sym Grad v||L2(Ω)

holds for all vector fields v ∈ H(Grad; Ω) with Grad v ∈
◦
H(Curl0; Γt,Ω).

In classical terms, Grad v ∈
◦
H(Curl0; Γt,Ω) means that the restricted tangential traces

ν × grad vn|Γt vanish, i.e., grad vn = ∇vn, n = 1, . . . , 3, are normal at Γt. In other words,
τ · ∇vn|Γt = 0 for all tangential vectors fields τ on Γt.

Proof Let Γ̃ 6= ∅ be a relatively open connected component of Γt. Applying Lemma 8
to each component of v, there exists a constant vector cv ∈ R3 such that v − cv belongs

to
◦
H(Grad; Γ̃,Ω). Then, Lemma 6 (i) (with Γt = Γ̃ and a possibly larger ck,t) completes

the proof. �

Definition 10 Ω is called ‘sliceable’, if there exist J ∈ N and Ωj ⊂ Ω, j = 1, . . . , J ,
such that Ω \ (Ω1 ∪ . . . ∪ ΩJ) is a nullset and for j = 1, . . . , J

(i) Ωj are open, disjoint and simply connected Lipschitz subdomains of Ω,

(ii) Γt,j := intrel(Ωj ∩ Γt) 6= ∅, if Γt 6= ∅.

Here, intrel denotes the interior with respect to the topology on Γ.

Remark 11 Assumptions of this type are not new, see e.g. [4, p.836] or [5, p.3]. From
a practical point of view, all domains considered in applications are sliceable, but it is not
clear whether every Lipschitz domain is already sliceable.

Lemma 12 (Korn’s First Inequality: Irrotational Version) Let Ω be sliceable. There exists
ck ≥ ck,t > 0, such that the following inequalities hold:

(i) If Γt 6= ∅, then for all tensor fields T ∈
◦
H(Curl0; Γt,Ω)

||T ||L2(Ω) ≤ ck ||symT ||L2(Ω) . (3.1)

(ii) If Γt = ∅, then for all tensor fields T ∈ H(Curl0; Ω) there exists a piece-wise constant
skew-symmetric tensor field A such that

||T − A||L2(Ω) ≤ ck ||symT ||L2(Ω) ,

||T ||L2(Ω) ≤ ck
(
||symT ||2L2(Ω) + ||A||2L2(Ω)

)1/2
.
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Figure 1: Two ways to cut a sliceable domain into two (J = 2) subdomains. Roughly
speaking, a domain is sliceable if it can be ‘cut’ into finitely many simply connected
Lipschitz ‘pieces’ Ωj, i.e., any closed curve inside some piece Ωj is homotop to a point,
this is, one has to cut all handles. Holes inside Ω are permitted since we are in 3D.

(ii’) If Γt = ∅ and Ω is additionally simply connected, then (ii) holds with the uniquely
determined constant skew-symmetric tensor field A := AT = πso(3)T given by (2.7).

Moreover, T−AT ∈ H(Curl0; Ω)∩so(3)⊥ and AT = 0 if and only if T⊥ so(3). Thus,

(3.1) holds for all T ∈ H(Curl0; Ω) ∩ so(3)⊥.

Again we note that in classical terms a tensor T ∈
◦
H(Curl0; Γt,Ω) is irrotational and

the vector field Tτ |Γt vanishes for all tangential vector fields τ at Γt.

Remark 13 Without proof the last part of the result Lemma 12 (ii’) has been used
implicitly in [39]. The authors of [39] neglect the problems caused by non-simply connected
domains. See also our discussion in [84].

Proof Let Γt 6= ∅. According to Definition 10 we decompose Ω into Ω1 ∪ . . . ∪ ΩJ .

Let T ∈
◦
H(Curl0; Γt,Ω) and 1 ≤ j ≤ J . Then, the restriction Tj := T |Ωj

belongs to

H(Curl0; Ωj). Picking a sequence (T `) ⊂
◦
C∞(Γt; Ω) converging to T in H(Curl; Ω), we see

that (T `|Ωj
) ⊂

◦
C∞(Γt,j; Ω) converges to Tj in H(Curl; Ωj). Thus, Tj ∈

◦
H(Curl0; Γt,j,Ωj).

By definition, each Ωj is simply connected. Therefore, there exist potential vector fields

vj ∈ H(Grad; Ωj) with Grad vj = Tj. Lemma 9 yields for all j

||Tj||L2(Ωj) ≤ ck,t,j ||symTj||L2(Ωj)

with ck,t,j > 0. Summing up, we obtain

||T ||L2(Ω) ≤ ck ||symT ||L2(Ω) , ck := max
j=1,...,J

ck,t,j,
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which proves (i). Now, we assume Γt = ∅. Let T ∈ H(Curl0; Ω) and again let Ω be
decomposed into Ω1 ∪ . . . ∪ ΩJ by Definition 10. Again, since every Ωj, j = 1, . . . , J , is

simply connected and Tj ∈ H(Curl0; Ωj), there exist vector fields vj ∈ H(Grad; Ωj) with
Grad vj =: Tj = T in Ωj. By Korn’s first inequality, Lemma (6) (ii), there exist positive
ck,s,j and ATj ∈ so(3) with∣∣∣∣Tj − ATj ∣∣∣∣L2(Ωj)

≤ ck,s,j ||symTj||L2(Ωj) , ATj = skew

∮
Ωj

Tj dλ = skew

∮
Ωj

T dλ.

We define the piece-wise constant skew-symmetric tensor field A a.e. by A|Ωj
:= ATj and

set ck := max
j=1,...,J

ck,s,j. Summing up gives (ii). We have also proved the first assertion of

(ii’), since we do not have to slice if Ω is simply connected. The remaining assertion of (ii’)
concerning the projections are trivial, since πso(3) : L2(Ω) → so(3) is a L2(Ω)-orthogonal
projector. We note that this can be seen also by direct calculations: To show that T −AT
belongs to H(Curl0; Ω) ∩ so(3)⊥ we note AT ∈ H(Curl0; Ω) and compute for all A ∈ so(3)
(compare with (A.9))

〈AT , A〉L2(Ω) = 〈
∫

Ω

T dλ,A〉R3×3 =

∫
Ω

〈T,A〉R3×3 dλ = 〈T,A〉L2(Ω) .

Hence, AT = 0 implies T⊥ so(3). On the other hand, setting A := AT shows that T⊥ so(3)
also implies AT = 0. �

3.2 The new inequality

From now on, we assume generally that Ω is sliceable. For tensor fields T ∈ H(Curl; Ω)
we define the semi-norm ||| · ||| by

|||T |||2 := ||symT ||2L2(Ω) + ||CurlT ||2L2(Ω) . (3.2)

Our main result is presented in the following theorem.

Theorem 14 Let ĉ := max{
√

2ck, cm
√

1 + 2c2
k} and c̃ :=

√
2 max{ck, cm(1 + ck)} ≥ ĉ.

(i) If Γt 6= ∅, then for all tensor fields T ∈
◦
H(Curl; Γt,Ω)

||T ||L2(Ω) ≤ ĉ |||T ||| . (3.3)

(ii) If Γt = ∅, then for all tensor fields T ∈ H(Curl; Ω) there exists a piece-wise constant
skew-symmetric tensor field A, such that

||T − A||L2(Ω) ≤ c̃ |||T ||| , ||T ||L2(Ω) ≤
√

2 max{c̃, 1}
(
|||T |||2 + ||A||2L2(Ω)

)1/2
.

Note that, in general A /∈ H(Curl; Ω).
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(ii’) If Γt = ∅ and Ω is additionally simply connected, then for all tensor fields T in

H(Curl; Ω) there exists a uniquely determined constant skew-symmetric tensor field
A = AT ∈ so(3), such that

||T − AT ||L2(Ω) ≤ ĉ |||T ||| ,

||T ||L2(Ω) ≤
√

2 max{ĉ, 1}
(
|||T |||2 + ||AT ||2L2(Ω)

)1/2
,

||T − AT ||H(Curl;Ω)
≤ (1 + ĉ2)1/2 |||T ||| ,

||T ||H(Curl;Ω)
≤
√

2(1 + ĉ2)1/2
(
|||T |||2 + ||AT ||2L2(Ω)

)1/2
.

and AT = πso(3)T is given by (2.7). Moreover, T − AT ∈ H(Curl; Ω) ∩ so(3)⊥ and

AT = 0 if and only if T⊥ so(3). Thus, (3.3) holds for all T ∈ H(Curl; Ω) ∩ so(3)⊥.
Furthermore, AT can be represented by

AT = AR := πso(3)R = skew

∮
Ω

Rdλ ∈ so(3),

where R denotes the Helmholtz projection of T onto H(Curl0; Ω) according to Corol-
lary 5.

Proof Let Γt 6= ∅ and T ∈
◦
H(Curl; Γt,Ω). According to Corollary 5 we orthogonally

decompose

T = R + S ∈
◦
H(Curl0; Γt,Ω)⊕ Curl

◦
H(Curl; Γn,Ω).

Then, CurlS = CurlT and we observe that S belongs to

◦
H(Curl; Γt,Ω) ∩ Curl

◦
H(Curl; Γn,Ω) =

◦
H(Curl; Γt,Ω) ∩

◦
H(Div0; Γn,Ω) ∩ (H(Ω)3)⊥.

Hence, by Corollary 4 we have

||S||L2(Ω) ≤ cm ||CurlT ||L2(Ω) . (3.4)

Then, by orthogonality, Lemma 12 (i) for R and (3.4) we obtain

||T ||2L2(Ω) = ||R||2L2(Ω) + ||S||2L2(Ω) ≤ c2
k ||symR||2L2(Ω) + ||S||2L2(Ω)

≤ 2c2
k ||symT ||2L2(Ω) + (1 + 2c2

k) ||S||
2
L2(Ω)

and thus ||T ||2L2(Ω) ≤ ĉ2 |||T |||2, which proves (i).

Now, let Γt = ∅ and T ∈ H(Curl; Ω). First, we show (ii’). We follow in close lines
the first part of the proof. For the convenience of the reader, we repeat the previous
arguments in this special case. According to Corollary 5 we orthogonally decompose

T = R + S ∈ H(Curl0; Ω)⊕ Curl
◦
H(Curl; Ω).
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Then, CurlS = CurlT and

S ∈ H(Curl; Ω) ∩ Curl
◦
H(Curl; Ω) = H(Curl; Ω) ∩

◦
H(Div0; Ω) ∩ (H(Ω)3)⊥.

Again, by Corollary 4 we have (3.4). Note that AR ∈ H(Curl0; Ω) since AR ∈ so(3) is
constant. Then, by orthogonality, Lemma 12 (ii’) applied to R and (3.4)

||T − AR||2L2(Ω) = ||R− AR||2L2(Ω) + ||S||2L2(Ω) ≤ c2
k ||symR||2L2(Ω) + ||S||2L2(Ω)

≤ 2c2
k ||symT ||2L2(Ω) + (1 + 2c2

k) ||S||
2
L2(Ω)

and thus ||T − AR||2L2(Ω) ≤ ĉ2 |||T |||2. We need to show AT = AR or equivalently AS = 0.

For this, let A ∈ so(3) and S = CurlX with X ∈
◦
H(Curl; Ω). Then

〈AS, A〉L2(Ω) = 〈
∫

Ω

S dλ,A〉R3×3 = 〈CurlX,A〉L2(Ω) = 0.

By setting A := AS, we get AS = 0. The proof of (ii’) is complete, since all other
remaining assertions are trivial. Finally, we show (ii). For this, we follow the proof of
(ii’) up to the point, where AR came into play. Now, by Lemma 12 (ii) for R we get a
piece-wise constant skew-symmetric tensor A := AR. We note that in general A does not
belong to H(Curl; Ω) anymore. Hence, we loose the L2(Ω)-orthogonality R − A⊥S. But
again, by Lemma 12 (ii) and (3.4)

||T − A||L2(Ω) ≤ ||R− A||L2(Ω) + ||S||L2(Ω) ≤ ck ||symR||L2(Ω) + ||S||L2(Ω)

≤ ck ||symT ||L2(Ω) + (1 + ck) ||S||L2(Ω)

≤ ck ||symT ||L2(Ω) + (1 + ck)cm ||CurlT ||L2(Ω)

and thus ||T − A||L2(Ω) ≤ c̃ |||T |||, which proves (ii). �

As easy consequence we obtain:

Theorem 15 Let Γt 6= ∅ resp. Γt = ∅ and Ω be simply connected. Then, on
◦
H(Curl; Γt,Ω)

resp. H(Curl; Ω) ∩ so(3)⊥ the norms || · ||H(Curl;Ω)
and ||| · ||| are equivalent. In particular,

||| · ||| is a norm on
◦
H(Curl; Γt,Ω) resp. H(Curl; Ω) ∩ so(3)⊥ and there exists a positive

constant c, such that

c ||T ||H(Curl;Ω)
≤ |||T ||| =

(
||symT ||2L2(Ω) + ||CurlT ||2L2(Ω)

)1/2 ≤ ||T ||H(Curl;Ω)

holds for all T in
◦
H(Curl; Γt,Ω) resp. H(Curl; Ω) ∩ so(3)⊥.
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3.3 Consequences and relations to Korn and Poincaré

There are two immediate consequences of Theorem 14 and the inclusion

Grad
◦
H(Grad; Γt,Ω) ⊂

◦
H(Curl0; Γt,Ω)

if the tensor field T is either irrotational or skew-symmetric.
For irrotational tensor fields T , i.e., CurlT = 0 or even T = Grad v, we obtain

generalized versions of Korn’s first inequality. E.g., in the case Γt 6= ∅ we get:

Corollary 16 (Korn’s First Inequality) Let Γt 6= ∅.

(i) ||T ||L2(Ω) ≤ ĉ ||symT ||L2(Ω) holds for all tensor fields T ∈
◦
H(Curl0; Γt,Ω).

(ii) ||Grad v||L2(Ω) ≤ ĉ ||sym Grad v||L2(Ω) holds for all vector fields v ∈ H(Grad; Ω) with

Grad v ∈
◦
H(Curl0; Γt,Ω).

(iii) ||Grad v||L2(Ω) ≤ ĉ ||sym Grad v||L2(Ω) holds for all vector fields v ∈
◦
H(Grad; Γt,Ω).

These are different generalized versions of Korn’s first inequality. (iii), i.e., the classical
Korn’s first inequality from Lemma 6 (i), is implied by (ii), i.e., Lemma 9, which is implied
by (i), i.e., Lemma 12 (i). We note ck,s ≤ ck,t ≤ ck ≤ ĉ and that in classical terms the
boundary condition, e.g., in (ii), holds, if grad vn = ∇vn, n = 1, . . . , 3, are normal at Γt,
which then extends (iii) through the weaker boundary condition.

For skew-symmetric tensors fields we get back Poincaré’s inequality. More precisely,
we may identify a scalar function u with a skew-symmetric tensor field T , i.e.,

T := Tu :=

 0 0 u
0 0 0
−u 0 0

 ∼= u and hence CurlT =

∂2 u − ∂1 u 0
0 0 0
0 − ∂3 u ∂2 u

 .
Now, CurlT is as good as gradu, see (1.21) and

ν × T |Γt =

ν2u|Γt −ν1u|Γt 0
0 0 0
0 −ν3u|Γt ν2u|Γt

 = 0 ⇔ u|Γt = 0.

E.g., in the case Γt 6= ∅ we get by Theorem 14 (i):

Corollary 17 (Poincaré’s Inequality) Let Γt 6= ∅. For all special skew-symmetric tensor

fields T = Tu in
◦
H(Curl; Γt,Ω), i.e., for all functions u ∈

◦
H(grad; Γt,Ω) with u ∼= T ,

||u||L2(Ω) ≤ ĉ ||gradu||L2(Ω) .
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1. Maxwell

|v| ≤ cm(| curl v|+| div v|)
2. Poincaré

|u| ≤ cp| gradu|
3. Korn

|Grad v| ≤ ck| sym Grad v|

I. generalized Poincaré

|E| ≤ cp,q(| dE|+ | δ E|)

q=1
E∼=v vector field

d=curl, δ=div

II

q=0
E∼=u function
d=grad, δ=0

JJ

II. our new inequality

|T | ≤ ĉ(| symT |+ |CurlT |)

T∈so(3)
(T skew)

YY

T=Grad v
(T compatible)

UU

Figure 2: The three fundamental inequalities are implied by two. For the constants we
have cp = cp,0, cm = cp,1 and ck, cp ≤ ĉ.

Proof We have T ∈
◦
H(Curl; Γt,Ω), if and only if u ∈

◦
H(grad; Γt,Ω). Moreover,

2 ||u||2L2(Ω) = ||T ||2L2(Ω) ≤ ĉ2 ||CurlT ||2L2(Ω) ≤ 2ĉ2 ||gradu||2L2(Ω)

holds. �

We note that the latter Corollary also remains true for general skew-symmetric tensor

fields T ∈
◦
H(Curl; Γt,Ω) and vector fields v ∈

◦
H(Grad; Γt,Ω) with

T =

 0 −v1 v2

v1 0 −v3

−v2 v3 0

 ∼= v.

Remark 18 Let us consider the fundamental generalized Poincaré inequality for differ-
ential forms, i.e., for all q = 0, . . . , 3 there exist constants cp,q > 0, such that for all

q-forms E ∈
◦
Dq(Γt,Ω) ∩

◦
∆q(Γn,Ω) ∩Hq(Ω)⊥

||E||L2,q(Ω) ≤ cp,q
(
||dE||L2,q+1(Ω) + ||δ E||L2,q−1(Ω)

)
(3.5)

holds. We note that the analogue of Corollary 2 holds as well. Here, E is a differen-
tial form of rank q and d, δ = ± ∗ d ∗, ∗ denote the exterior derivative, co-derivative
and Hodge’s star operator, respectively. Dq(Ω) is the Hilbert space of all L2,q(Ω) forms

having weak exterior derivative in L2,q+1(Ω) and by
◦
Dq(Γt,Ω) we denote the closure of

smooth forms vanishing in a neighborhood of Γt with respect to the natural graph norm
of Dq(Ω). The same construction is used to define the corresponding Hilbert spaces for

the co-derivative ∆q(Ω). Moreover, we introduce Hq(Ω) :=
◦
Dq

0(Γt,Ω) ∩
◦
∆q

0(Γn,Ω), the
finite-dimensional space of generalized Dirichlet-Neumann forms. In classical terms, we
have

E ∈ Hq(Ω) ⇔ dE = 0, δ E = 0, ι∗Γt
E = 0, ι∗Γn

∗ E = 0,



26 Patrizio Neff, Dirk Pauly, Karl-Josef Witsch

q 0 1 2 3

d grad curl div 0
δ 0 div − curl grad

◦
Dq(Γt,Ω)

◦
H(grad; Γt,Ω)

◦
H(curl; Γt,Ω)

◦
H(div; Γt,Ω) L2(Ω)

◦
∆q(Γn,Ω) L2(Ω)

◦
H(div; Γn,Ω)

◦
H(curl; Γn,Ω)

◦
H(grad; Γn,Ω)

ι∗Γt
E E|Γt ν × E|Γt ν · E|Γt 0

~ι∗Γn
∗ E 0 ν · E|Γn −ν × (ν × E)|Γn E|Γn

Figure 3: identification table for q-forms and vector proxies in R3

where ιΓt : Γt ↪→ Γ ↪→ Ω denotes the canonical embedding.
Our new inequality, i.e., Theorem 14, together with the generalized Poincaré inequality

(3.5) imply the three well known fundamental inequalities, i.e.,

1. the Maxwell inequality, i.e., Lemma 1,

2. Poincaré’s inequality (2.3),

3. Korn’s inequality, i.e., Lemma 6 (i).

Figure 2 illustrates this fact and Figure 3 shows an identification table for q-forms and
corresponding vector proxies.

3.4 A generalization: media with structural changes

Let Γt 6= ∅ throughout this subsection. We consider the case of media with structural
changes, see [54, 78]. To handle this case we use a result by Neff [75], later improved

by Pompe [103], c.f., (1.16). To apply the main result from [103], let F ∈ C0(Ω) be a
(3× 3)-matrix field satisfying detF ≥ µ with some µ > 0. Then, there exists a constant

ck,s,F > 0, such that for all v ∈
◦
H(Grad; Γt,Ω)

||Grad v||L2(Ω) ≤ ck,s,F ||sym(Grad v F )||L2(Ω) . (3.6)

For tensor fields T ∈ H(Curl; Ω) we define the semi-norm ||| · |||F by

|||T |||2F := ||sym(TF )||2L2(Ω) + ||CurlT ||2L2(Ω) . (3.7)

Furthermore, there exists a constant cF > 0 such that for all T ∈ L2(Ω)

||TF ||L2(Ω) ≤ cF ||T ||L2(Ω) .

Let us first generalize Lemma 9.
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Lemma 19 (Generalized Korn’s First Inequality: Tangential Version) There exists a con-
stant ck,t,F ≥ ck,s,F , such that the inequality

||Grad v||L2(Ω) ≤ ck,t,F ||sym(Grad vF )||L2(Ω)

holds for all vector fields v ∈ H(Grad; Ω) with Grad v ∈
◦
H(Curl0; Γt,Ω).

Proof The proof is identical with the one of Lemma 9 using (3.6) instead of Lemma 6
(i). �

We can generalize Lemma 12.

Lemma 20 (Generalized Korn’s Inequality: Irrotational Version) There exists a constant
ck,F ≥ ck,t,F , such that the inequality

||T ||L2(Ω) ≤ ck,F ||sym(TF )||L2(Ω)

holds for all tensor fields T ∈
◦
H(Curl0; Γt,Ω).

Proof The proof is identical with the one of Lemma 12 (i) using Lemma 19 instead of
Lemma 9. �

Finally, we get:

Theorem 21 Let ĉF := max{
√

2ck,F , cm
√

1 + 2c2
k,F c

2
F}. There exists c > 0 such that for

all T ∈
◦
H(Curl; Γt,Ω)

||T ||L2(Ω) ≤ ĉF |||T |||F , ||T ||H(Curl;Ω)
≤ c |||T |||F .

Proof It is sufficient to prove the first estimate. Let T ∈
◦
H(Curl; Γt,Ω). Again, we follow

in close lines the proof of Theorem 14 (i). With the same notations and using Lemma 20
instead of Lemma 12 (i) we see

||T ||2L2(Ω) = ||R||2L2(Ω) + ||S||2L2(Ω) ≤ c2
k,F ||sym(RF )||2L2(Ω) + ||S||2L2(Ω)

≤ 2c2
k,F ||sym(TF )||2L2(Ω) + 2c2

k,F ||sym(SF )||2L2(Ω) + ||S||2L2(Ω)

≤ 2c2
k,F ||sym(TF )||2L2(Ω) + (1 + 2c2

k,F c
2
F ) ||S||2L2(Ω)

and thus ||T ||2L2(Ω) ≤ ĉ2
F |||T |||

2
F . �



28 Patrizio Neff, Dirk Pauly, Karl-Josef Witsch

3.5 More generalizations

Finally we note that there are a lot more generalizations. In future contributions we will
also prove versions of our estimates

• in Lp(Ω) spaces (possibly just for p near to 2),

• in unbounded domains, like exterior domains,

• for domains Ω ⊂ RN (using differential forms),

• with inhomogeneous (restricted) tangential traces,

• concerning the deviatoric part of a tensor.

3.6 Conjectures

In view of one of the estimates which we have proved in this contribution, i.e., Theorem
14 (ii’), and the rigidity estimate (1.19) we speculate that

min
R∈SO(3)

∫
Ω

distp(T,R) dλ ≤ cpk

∫
Ω

(
distp(T, SO(3)) + |CurlT |p

)
dλ

may hold for some 1 < p <∞.14

A result in Garroni et al. [39, Th.9] states that for Ω ⊂ R2 having Lipschitz boundary15

there exists c > 0 such that

||T ||L2(Ω) ≤ c
(
||symT ||L2(Ω) + |CurlT |(Ω)

)
(3.8)

holds for all T ∈ L1(Ω) with AT = 0 and AT from (2.7). Here, the term |CurlT |(Ω)
denotes the total variation measure of the Curl-operator. However, the employed methods
are restricted to the two-dimensional case since decisive use is made of the crucial R2-
identity curl(v1, v2) = div(−v2, v1), see our discussion in [84].

In view of the inequality (3.8) we conjecture that for a sliceable (and maybe simply
connected) domain Ω ⊂ RN there exists c > 0 such that

||T ||LN/(N−1)(Ω) ≤ c
(
||symT ||L2(Ω) + |CurlT |(Ω)

)
(3.9)

holds for all T ∈ L1(Ω) with AT = 0, where CurlT is the natural generalization of the
Curl-operator to higher dimensions, see [83]. This conjecture is based on the observation,

14

∫
Ω

distp(T, SO(3)) dλ gives an Lp(Ω)-control of T for free, contrary to our infinitesimal version, The-

orem 14 (ii’).
15The authors assume implicitly that Ω is sliceable and probably simply connected.
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that for N = 3 and T already skew-symmetric one cannot be better than the well-known
Poincaré-Wirtinger inequality in BV(Ω), i.e.,

||u− αu||LN/(N−1)(Ω) ≤ c|∇u|(Ω), αu := πRu =

∮
Ω

u dλ ∈ R.

The relevance of the latter for (3.9) is clear by taking into account that for skew-symmetric
matrices T , CurlT can be interchanged with all partial derivatives, see inequality (1.21).
However, new methods have to be developed to tackle this problem.

A Appendix

A.1 Korn’s first inequality with full Dirichlet boundary condi-
tion

We note some simple estimates concerning the most elementary version of Korn’s first
inequality for a domain Ω ⊂ RN , N ∈ N. By twofold partial integration we get

〈∂n vm, ∂m vn〉L2(Ω) = 〈∂m vm, ∂n vn〉L2(Ω)

for all smooth vector fileds v ∈
◦
C∞(Ω) and hence

||sym∇v||2L2(Ω) =
1

4

N∑
n,m=1

||∂n vm + ∂m vn||2L2(Ω)

=
1

2

N∑
n,m=1

(
||∂n vm||2L2(Ω) + 〈∂n vm, ∂m vn〉L2(Ω)

)
=

1

2

(
||∇v||2L2(Ω) + ||div v||2L2(Ω)

)
=

1

2
||curl v||2L2(Ω) + ||div v||2L2(Ω) ,

(A.1)

which holds for all v ∈
◦
H1(Ω) as well. For a quadaratic matrix T and α ∈ R we define

the deviatoric part by

devα T := T − α trT id .

Then, for any α ∈ R and v ∈ H1(Ω) we obtain for the deviatoric part of the symmetric
gradient

||devα sym∇v||2L2(Ω) = ||sym∇v − α div v id||2L2(Ω)

= ||sym∇v||2L2(Ω) + cα ||div v||2L2(Ω) , cα := α(Nα− 2).
(A.2)
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Combining (A.1) and (A.2) we get for any α ∈ R and v ∈
◦
H1(Ω)

||devα sym∇v||2L2(Ω) =
1

2
||∇v||2L2(Ω) + (cα +

1

2
) ||div v||2L2(Ω)

≥ 1

2
||∇v||2L2(Ω) +

N − 2

2N
||div v||2L2(Ω) ,

||devα sym∇v||2L2(Ω) =
1

2
||curl v||2L2(Ω) + (cα + 1) ||div v||2L2(Ω)

≥ 1

2
||curl v||2L2(Ω) +

N − 1

N
||div v||2L2(Ω) ,

||devα sym∇v||2L2(Ω) = (2cα + 1) ||sym∇v||2L2(Ω) − cα ||∇v||
2
L2(Ω)

≥ N − 2

N
||sym∇v||2L2(Ω) − cα ||∇v||

2
L2(Ω) ,

||devα sym∇v||2L2(Ω) = (cα + 1) ||sym∇v||2L2(Ω) −
cα
2
||curl v||2L2(Ω)

≥ N − 1

N
||sym∇v||2L2(Ω) −

cα
2
||curl v||2L2(Ω) .

We note

cα = c̃α −
1

N
, cα +

1

2
= c̃α +

N − 2

2N
, cα + 1 = c̃α +

N − 1

N
, c̃α := N(α− 1

N
)2.

Let us define I := (0, 2
N

) and collect some resulting estimates: For all α ∈ R and all

v ∈ H1(Ω)

||div v||L2(Ω) ≤
√
N ||∇v||L2(Ω) ,

||sym∇v||L2(Ω) ≤ ||∇v||L2(Ω) ,

||sym∇v||L2(Ω) ≤ ||devα sym∇v||L2(Ω) ∀α ∈ R \ I,

||div v||L2(Ω) ≤
1
√
cα
||devα sym∇v||L2(Ω) ∀α ∈ R \ Ī ,

||devα sym∇v||L2(Ω) ≤ ||sym∇v||L2(Ω) ∀α ∈ Ī .
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For all α ∈ R and all v ∈
◦
H1(Ω)

||curl v||L2(Ω) , ||div v||L2(Ω) ≤ ||∇v||L2(Ω) ,

||div v||L2(Ω) ≤ ||sym∇v||L2(Ω) ,

||div v||L2(Ω) ≤
√

N

N − 1
||devα sym∇v||L2(Ω) ,

||∇v||L2(Ω) ≤
√

2 ||sym∇v||L2(Ω) ,

||∇v||L2(Ω) ≤
√

2 ||devα sym∇v||L2(Ω) ,

||devα sym∇v||L2(Ω) ≤
√
cα + 1 ||sym∇v||L2(Ω) ∀α ∈ R \ I,

||sym∇v||L2(Ω) ≤
1√

cα + 1
||devα sym∇v||L2(Ω) ∀α ∈ Ī .

We note that the most important case is α = 1/N ∈ I, where we have c̃α = 0 and
cα + 1 = (N − 1)/N as well as

1√
2
||∇v||L2(Ω) ≤

∣∣∣∣∣∣dev 1
N

sym∇v
∣∣∣∣∣∣
L2(Ω)

≤ ||sym∇v||L2(Ω) ≤ ||∇v||L2(Ω)

for all v ∈
◦
H1(Ω).

A.2 Korn’s first inequality without boundary condition

By Rellich’s selection theorem for H1(Ω), Korn’s second inequality and normalization one
gets

||∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) (A.3)

for all v ∈ H1(Ω) with ∇v⊥ so(3). Equivalently, one has for all v ∈ H1(Ω)∣∣∣∣(id−πso(3))∇v
∣∣∣∣
L2(Ω)

≤ ck ||sym∇v||L2(Ω) ,

||∇v||L2(Ω) ≤ ck
(
||sym∇v||2L2(Ω) +

∣∣∣∣πso(3)∇v
∣∣∣∣2
L2(Ω)

)1/2
.

(A.4)

Here πso(3) : L2(Ω) → so(3) denotes the L2(Ω)-orthogonal projection onto so(3) and can
be expressed explicitly by

πso(3)T :=
3∑
`=1

〈
T,A`

〉
L2(Ω)

A`,
∣∣∣∣πso(3)T

∣∣∣∣2
L2(Ω)

=
3∑
`=1

|
〈
T,A`

〉
L2(Ω)

|2,

where (A`)3
`=1 is an L2(Ω)-orthonormal basis of so(3). Note that

(
λ(Ω)1/2A`

)3

`=1
is also

an R3×3-orthonormal basis of so(3) and thus we have the representation

πso(3)T =
3∑
`=1

〈skew

∫
Ω

T dλ,A`〉R3×3A` = skew

∮
Ω

T dλ =: AT ∈ so(3).
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Poincaré’s inequality for vector fields by normalization reads

||v||L2(Ω) ≤ cp ||∇v||L2(Ω) (A.5)

for all v ∈ H1(Ω) with v⊥R3. Equivalently, one has for all v ∈ H1(Ω)

||(id−πR3)v||L2(Ω) ≤ cp ||∇v||L2(Ω) ,

||v||L2(Ω) ≤ cp
(
||∇v||2L2(Ω) + ||πR3v||2L2(Ω)

)1/2 (A.6)

and hence

||(id−πR3)v||H1(Ω)
≤ (1 + c2

p)
1/2 ||∇v||L2(Ω) ,

||v||H1(Ω)
≤ (1 + c2

p)
1/2
(
||∇v||2L2(Ω) + ||πR3v||2L2(Ω)

)1/2
.

Here πR3 : L2(Ω) → R3 denotes the L2(Ω)-orthogonal projection onto R3 and can be
expressed explicitly by

πR3v :=
3∑
`=1

〈
v, e`

〉
L2(Ω)

e`, ||πR3v||2L2(Ω) =
3∑
`=1

|
〈
v, e`

〉
L2(Ω)

|2,

where (e`)3
`=1 is an L2(Ω)-orthonormal basis of R3. Note that

(
λ(Ω)1/2e`

)3

`=1
is also an

R3-orthonormal basis of R3 and thus we have the representation

πR3v =
3∑
`=1

〈
∫

Ω

v dλ, e`〉R3e` =

∮
Ω

v dλ =: av ∈ R3.

Combining (A.3) and (A.5) we obtain

(1 + c2
p)
−1/2 ||v||H1(Ω)

≤ ||∇v||L2(Ω) ≤ ck ||sym∇v||L2(Ω) (A.7)

for all v ∈ H1(Ω) with ∇v⊥ so(3) and v⊥R3. Without these conditions one has

(1 + c2
p)
−1/2 ||(id−πRM)v||H1(Ω)

≤
∣∣∣∣(id−πso(3))∇v

∣∣∣∣
L2(Ω)

≤ ck ||sym∇v||L2(Ω) ,

(1 + c2
p)
−1/2 ||v||H1(Ω)

≤
(
||∇v||2L2(Ω) + ||πR3v||2L2(Ω)

)1/2
(A.8)

≤ ck
(
||sym∇v||2L2(Ω) +

∣∣∣∣πso(3)∇v
∣∣∣∣2
L2(Ω)

+ ||πR3v||2L2(Ω)

)1/2

≤ ck
(
||sym∇v||2L2(Ω) + ||πRMv||2H1(Ω)

)1/2
,

for all v ∈ H1(Ω), where πRM : H1(Ω)→ RM is defined by

πRMv := (πso(3)∇v)ξ + πR3

(
v − (πso(3)∇v)ξ

)
= πR3v + (id−πR3)

(
(πso(3)∇v)ξ

)
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with the identity function ξ(x) := id(x) = x. We note

πso(3)∇v = A∇v = skew

∮
Ω

∇v dλ ∈ so(3), πR3v = av =

∮
Ω

v dλ ∈ R3,

πRMv = rv := A∇vξ + av − A∇vaξ ∈ RM, ∇πRMv = ∇rv = A∇v = πso(3)∇v ∈ so(3).

Note that u := (id−πRM)v = v − rv belongs to H1(Ω) and satisfies

∇u = (id−πso(3))∇v⊥ so(3), u = (id−πR3)
(
v − (πso(3)∇v)ξ

)
⊥R3.

Hence (A.7) holds for u. Moreover, we have for v ∈ H1(Ω)

πRMv = 0 ⇔ πso(3)∇v = 0 ∧ πR3v = 0 ⇔ ∇v⊥ so(3) ∧ v⊥R3.

This can also be seen be elementary calculations: For all A ∈ so(3) and all a ∈ R3 we
have

〈A∇v, A〉L2(Ω) = 〈
∫

Ω

∇v dλ,A〉R3×3 =

∫
Ω

〈∇v, A〉R3×3 dλ = 〈∇v,A〉L2(Ω) ,

〈rv, a〉L2(Ω) = 〈
∫

Ω

rv dλ, a〉R3 = 〈A∇v
∫

Ω

ξ dλ+ λ(Ω)(av − A∇vaξ), a〉R3

= 〈
∫

Ω

v dλ, a〉R3 = 〈v, a〉L2(Ω) .

(A.9)

Thus ∇u⊥ so(3) and u⊥R3. This shows also that ∇v⊥ so(3) and v⊥R3 if we have rv = 0.

On the other hand, if v ∈ H1(Ω) with ∇v⊥ so(3) and v⊥R3, then rv = 0 because A∇v = 0
by setting A := A∇v ∈ so(3) and then av = 0 by setting a := av = rv.

Acknowledgements We heartily thank Kostas Pamfilos for his beautiful pictures of
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Poincaré’s inequality to H(Curl). J. Math. Sci. (N.Y.), 185(1):64–70, 2012.

[85] P. Neff and W. Pompe. Counterexamples in the theory of coerciveness for linear
elliptic systems related to generalizations of Korn’s second inequality. to appear in
Z. Angew. Math. Mech, http://arxiv.org/abs/1303.1387, Preprint UDE: SM-UDE-
765, 2013.

[86] J.A. Nitsche. On Korn’s second inequality. R.A.I.R.O, Analyse Numerique, 15,
no.3:237–248, 1981.

[87] O.A. Oleinik, A.S. Shamaev, and G.A. Yosifan. Mathematical problems in elasticity
and homogenisation. Studies in Mathematics and its Applications. North-Holland,
1992.

[88] D. Ornstein. A non-inequality for differential operators in the L1-norm. Arch. Rat.
Mech. Anal., 11:40–49, 1962.

[89] D. Pauly. Low frequency asymptotics for time-harmonic generalized Maxwell equa-
tions in nonsmooth exterior domains. Adv. Math. Sci. Appl., 16(2):591–622, 2006.

[90] D. Pauly. Generalized electro-magneto statics in nonsmooth exterior domains. Anal-
ysis (Munich), 27(4):425–464, 2007.



40 Patrizio Neff, Dirk Pauly, Karl-Josef Witsch

[91] D. Pauly. Complete low frequency asymptotics for time-harmonic generalized
Maxwell equations in nonsmooth exterior domains. Asymptot. Anal., 60(3-4):125–
184, 2008.

[92] D. Pauly. Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular
exterior domains with inhomogeneous and anisotropic media. Math. Methods Appl.
Sci., 31:1509–1543, 2008.

[93] D. Pauly and S. Repin. Two-sided a posteriori error bounds for electro-magneto
static problems. J. Math. Sci. (N.Y.), 166(1):53–62, 2010.

[94] L.E. Payne and H.F. Weinberger. On Korn’s inequality. Arch. Rat. Mech. Anal.,
8:89–98, 1968.

[95] R. Picard. Randwertaufgaben der verallgemeinerten Potentialtheorie. Math. Meth-
ods Appl. Sci., 3:218–228, 1981.

[96] R. Picard. On the boundary value problems of electro- and magnetostatics. Proc.
Roy. Soc. Edinburgh Sect. A, 92:165–174, 1982.

[97] R. Picard. An elementary proof for a compact imbedding result in generalized
electromagnetic theory. Math. Z., 187:151–164, 1984.

[98] R. Picard. On the low frequency asymptotics in and electromagnetic theory. J.
Reine Angew. Math., 354:50–73, 1984.

[99] R. Picard. Some decomposition theorems and their applications to non-linear po-
tential theory and Hodge theory. Math. Methods Appl. Sci., 12:35–53, 1990.

[100] R. Picard, N. Weck, and K.-J. Witsch. Time-harmonic Maxwell equations in the
exterior of perfectly conducting, irregular obstacles. Analysis (Munich), 21:231–263,
2001.
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