Peak Splitting and Bias Fields in Ferroelectric Hafnia Mediated by Interface Charge Effects

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Moritz Engl - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Wassim Hamouda - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Ines Häusler - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Suzanne Lancaster - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Luca Carpentieri - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH, Technische Universität Dresden (Autor:in)
  • Catherine Dubourdieu - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Freie Universität (FU) Berlin (Autor:in)
  • Stefan Slesazeck - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)

Abstract

The pristine state of hafnium-based ferroelectric devices exhibits various unwanted properties, such as imprinting and peak splitting, which diminish with bipolar cycling. The incorporation of a niobium oxide layer at different positions in metal–ferroelectric–metal and metal–ferroelectric–insulator–metal stacks is used to modify the pristine state of the device. X-ray photoelectron spectroscopy and transmission electron microscopy measurements are used to investigate the influence of niobium oxide on the zirconium hafnium oxide layer. It is hypothesized that the charged vacancies generated by introduced niobium oxide in the adjacent zirconium hafnium oxide layer result in an electric bias field that influences the pristine polarization state of the domains. A comparison of different stacks shows that peak splitting in the pristine state is most likely related to the formation of opposing electric bias fields in upward and downward polarized domains. Furthermore, the incorporation of niobium oxide in the zirconium hafnium oxide/aluminum oxide capacitor stack between the ferroelectric and insulating layer leads to a peak-splitting-free device without imprint, which could be explained by the increased influence of charge trapping near the zirconium hafnium oxide/niobium oxide and niobium oxide/aluminum oxide interfaces.

Details

OriginalspracheEnglisch
Seiten (von - bis)51468-51475
Seitenumfang8
FachzeitschriftACS Applied Materials and Interfaces
Jahrgang17
Ausgabenummer36
PublikationsstatusVeröffentlicht - 10 Sept. 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40856168
ORCID /0000-0003-3814-0378/work/193705556

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • ferroelectric devices, hafnium zirconium oxide, interface engineering, niobium oxide, oxygen vacancies, peak splitting