Pattern representation and recognition with accelerated analog neuromorphic systems

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Despite being originally inspired by the central nervous system, artificial neural networks have diverged from their biological archetypes as they have been remodeled to fit, particular tasks. In this paper, we review several possibilites to reverse map these architectures to biologically more realistic spiking networks with the aim of emulating them on fast, low-power neuromorphic hardware. Since many of these devices employ analog components, which cannot, be perfectly controlled, finding ways to compensate for the resulting effects represents a key challenge. Here, we discuss three different, strategies to address this problem: the addition of auxiliary network components for stabilizing activity, the utilization of inherently robust, architectures and a training method for hardware-emulated networks that, functions without, perfect, knowledge of the system's dynamics and parameters. For all three scenarios, we corroborate our theoretical considerations with experimental results on accelerated analog neuromorphic platforms.

Details

OriginalspracheEnglisch
TitelIEEE International Symposium on Circuits and Systems
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781467368520
PublikationsstatusVeröffentlicht - 25 Sept. 2017
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings - IEEE International Symposium on Circuits and Systems
ISSN0271-4310

Konferenz

TitelIEEE International Symposium on Circuits and Systems 2017
KurztitelISCAS 2017
Veranstaltungsnummer50
Dauer28 - 31 Mai 2017
StadtBaltimore
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-6286-5064/work/160048710

Schlagworte

ASJC Scopus Sachgebiete