Orbital textures and charge density waves in transition metal dichalcogenides

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • T. Ritschel - , Professur für Physik der Quantenmaterialien, Leibniz Institute for Solid State and Materials Research Dresden, Technische Universität Dresden (Autor:in)
  • J. Trinckauf - , Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • K. Koepernik - , Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • B. Büchner - , Professur für Experimentelle Festkörperphysik (gB/IFW), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • M. V. Zimmermann - , Deutsches Elektronen-Synchrotron (DESY) (Autor:in)
  • H. Berger - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Y. I. Joe - , University of Illinois at Urbana-Champaign (Autor:in)
  • P. Abbamonte - , University of Illinois at Urbana-Champaign (Autor:in)
  • J. Geck - , Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)

Abstract

Low-dimensional electron systems, as realized in layered materials, often tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves; a state of matter that at present attracts enormous attention. Here we reveal a remarkable and surprising feature of charge density waves, namely their intimate relation to orbital order. For the prototypical material 1T-TaS 2 we not only show that the charge density wave within the two-dimensional TaS 2 layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow manipulation of salient features of the electronic structure. Indeed, these orbital effects provide a route to switch 1T-TaS 2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200 meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides.

Details

OriginalspracheEnglisch
Seiten (von - bis)328-331
Seitenumfang4
FachzeitschriftNature physics
Jahrgang11
Ausgabenummer4
PublikationsstatusVeröffentlicht - 8 Apr. 2015
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2438-0672/work/158767773

Schlagworte

ASJC Scopus Sachgebiete