Optimizing Ferroelectric and Interface Layers in HZO-Based FTJs for Neuromorphic Applications

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ayse Sünbül - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Tarek Ali - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Konstantin Mertens - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Ricardo Revello - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • David Lehninger - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Franz Müller - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Maximilian Lederer - , Professur für Experimentalphysik/Photophysik, Institut für Angewandte Physik (IAP), Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Kati Kühnel - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Matthias Rudolph - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Sebastian Oehler - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Raik Hoffmann - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Katrin Zimmermann - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Kati Biedermann - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Philipp Schramm - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Malte Czernohorsky - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Konrad Seidel - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Thomas Kämpfe - , Fraunhofer-Institut für Elektronische Nanosysteme (Autor:in)
  • Lukas M. Eng - , Carus Lehrzentrum (CarL), Professur für Experimentalphysik/Photophysik, Technische Universität Dresden (Autor:in)

Abstract

Nonvolatile memories especially the ferroelectric (FE)-based ones such as ferroelectric tunnel junctions (FTJs) and ferroelectric field-effect transistors (FeFETs) have recently attracted a lot of attention. FTJs have been intensively researched for the last decade and found to be very promising memory devices due to their significant nondestructive readout advantage as compared to conventional ferroelectric random access memory (FRAM). However, more research is needed on FTJ devices to obtain reliable endurance and retention behavior. In this article, we demonstrate the characteristics and performance of zirconium-doped hafnium oxide-based FTJ devices in terms of FE switching and reliability. This is investigated for FTJ stack structure tuning as well as for the FE switching process in FTJ devices. The FTJ memory switching characteristics, the effects of polarization switching on the write conditions, and the impact of pulse width and pulse amplitude on switching are investigated. The impact of FE layer thickness and interface layer type/thickness are reported to obtain a maximum FTJ ION/IOFF ratio (memory window) and reliable performance. The maximum ION/IOFF ratio changes depending on the FE layer (zirconium-doped HfO2 layer) thickness (12, 8, 6, and 4 nm), the interface layer type (SiO2, Al2O3), and thickness(1 and 2nm), indicating the maximum value of ION/IOFF ratio for a 1 nm SiO2 interface layer stack. Moreover, a stable endurance of 104 cycles is reported and extrapolated measurements suggest stable retention for more than ten years. Time-dependent breakdown analysis was performed to investigate the reliability of devices indicating a lifetime of ten years.

Details

OriginalspracheEnglisch
Seiten (von - bis)808-815
Seitenumfang8
FachzeitschriftIEEE Transactions on Electron Devices
Jahrgang69
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Feb. 2022
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2484-4158/work/142257562

Schlagworte

Schlagwörter

  • Ferroelectric tunnel junction (FTJ), Hafnium zirconium oxide, Metal-ferroelectric-insulator-semiconductor (MFIS)